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Abstract
Exploration of avian gametologous genes, i.e., homologous genes located on both the Z and W chromosomes, provides a 
crucial information about the underlying mechanism pertaining to the evolution of these chromosomes. The domestic chicken 
(Gallus gallus (Linnaeus 1758); GGA) traditionally serves as the primary reference subject of these comparative cytogenomic 
studies. Using bioinformatic, molecular (overgo BAC library scanning), and cytogenetic (BAC-based FISH) techniques, 
we have investigated in detail a pair of UBE2R2/UBE2R2L gametologs. By screening a gridded genomic jungle fowl BAC 
library, CHORI-261, with a short labeled UBE2R2L gene fragment called overgo probe, we detected seven specific clones. 
For three of them, CH261-019I23, CH261-105E16, and CH261-114G22, we identified their precise cytogenetic location on 
the Gallus gallus W chromosome (GGAW). They also co-localized with the UBAP2L2 gene on the, as was shown previously, 
along with the CH261-053P09 BAC clone also containing the GGAW-specific UBE2R2L DNA sequence. The fine mapping 
of the UBE2R2/UBE2R2L homologs in the chicken genome also shed the light on comparative cytogenetic aspects in birds. 
Our findings provided further evidence that bird genomes moderately changed only during evolution and are suitable for 
successful use of interspecies hybridization using both overgo-based BAC library screen and BAC-based FISH.

Keywords Avian genome · Chromosome evolution and sex chromosomes · Pseudoautosomal region and meiotic 
recombination suppression · Bioinformatics tools · Overgo BAC library scanning · Fluorescence in situ hybridization

Introduction

It has been suggested that avian Z- and W-chromosomes 
originated from one autosome pair, but a different one from 
which the mammalian X- and Y-chromosomes evolved 
(Schmid et al. 2000). Some lines of evidence, however, 
lead to alternative suggestions concerning the evolution of 

bird and mammal chromosomes (Stiglec et al. 2007a). The 
W-chromosome in neognathous avian species has some 
features similar to the mammalian Y-chromosome, i.e., it 
is gene-poor and largely heterochromatic. Highly repetitive 
sequences belonging to XhoI-, EcoRI- and SspI-families rep-
resent about 80% of the DNA in the chicken (Gallus gallus 
(Linnaeus, 1758); GGA) W chromosome (GGAW). Only 
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about 10 Mb is represented by non-repetitive DNA (Itoh 
and Mizuno 2002).

In all neognathous birds studied to date, the Z–W pair 
of sex chromosomes (gonosomes) shows strictly localized 
recombination in a very short pseudoautosomal region (PAR; 
reviewed in Pigozzi and Solari 2005). Differentiation of the Z 
and W chromosomes in modern birds is thought to be a result 
of progressive and stepwise cessation of meiotic recombina-
tion (Lawson Handley et al. 2004; Schmid et al. 2005).

A significant part of GGAW was misassembled in initial 
sequencing efforts, that is, it was based exclusively on repeti-
tive sequences, which were subsequently found to be present on 
other chromosomes (Stiglec et al. 2007b). FISH mapping of the 
bacterial artificial chromosome (BAC) clones, which were puta-
tively thought to be GGAW-specific, to its counterpart Z chro-
mosome (GGAZ) allowed researchers to clarify the genic com-
position of GGAW (Stiglec et al. 2007b). Thus, several W-linked 
genes in this region have respective homologs on GGAZ (e.g., 
CHD1, HINT, SPIN, UBAP2, and ATP5A1), forming pairs of 
gametologous genes and reflecting their common origin from 
ancestral homologous chromosome pairs (Schmid et al. 2005).

One of these gametologous genes is UBE2R2 encoding the 
ubiquitin conjugating enzyme E2 R2 that is involved in modi-
fication of proteins with ubiquitin or ubiquitin-like proteins 
via an E1–E2–E3 cascade, which is crucial in many signaling 
networks (Jin et al. 2007). Being originally unmapped in the 
chicken, it was presumably localized on GGAZ judging from 
the comparative map analysis: the human ortholog maps to 
the HSA9 region that corresponds to GGAZ. In the recent 
chicken genome assembly GRCg6a (GRCg6a 2018), it is 
located on GGAZ, while its W-linked counterpart, UBE2R2L, 
is mapped to GGAW within the chicken PAR (Fig. 1).

Here, we investigated the chicken UBE2R2 genes located 
on GGAZ and GGAW. For this purpose, we implemented 
an effective genome analysis and mapping pipeline using 
the appropriate bioinformatic tools, molecular techniques 
(e.g., overgo hybridization), and cytogenetic methods such 
as a BAC-based fluorescence in situ hybridization (FISH). 
The relevant implications for, and insights into, evolutionary 
aspects of bird gonosome organization were inferred pro-
viding an additional information for further discussion and 
research in this area of avian biology.

Materials and methods

Avian species

In this work, we conducted bioinformatic, molecular and 
cytogenetic analyses focusing on the chicken (Gallus gal-
lus; order Galliformes) genome best studied among all 
birds. For further multifaceted comparative investigation, 
data obtained from our previous published and unpublished 

research on the following five bird species (with their respec-
tive Latin name and order in the parentheses) were also used: 
turkey (Meleagris gallopavo Linnaeus, 1758; Galliformes), 
Japanese quail (Coturnix japonica Temminck & Schlegel, 
1848; Galliformes), Sunda zebra finch (Taeniopygia gut-
tata (Vieillot, 1817); Passeriformes), white-throated spar-
row (Zonotrichia albicollis (Gmelin, 1789); Passeriformes), 
California condor (Gymnogyps californianus (Shaw, 1797); 
Cathartiformes; alternatively, Falconiformes, Ciconiiformes 
or Accipitriformes), and black stork (Ciconia nigra (Lin-
naeus, 1758); Ciconiiformes).

Genome analysis and mapping pipeline

To explore the pair of UBE2R2 genes, we developed and 
used an in-house genome analysis and mapping pipeline that 
encompassed the following components and applications: 
bioinformatics analyses → overgo hybridization → BAC-based 
FISH. The bioinformatic toolbox involved use of databases, 
sequence alignment tools, in silico overgo probe design, etc. 
Mining for UBE2R2 and related sequences was performed 
using NCBI- (e.g., Altschul et al. 1997; Wheeler et al. 2000; 
Cuff et al. 2000; Maglott et al. 2011; Sayers et al. 2021), 
UCSC- (Navarro Gonzalez et al. 2021) and Ensembl-based 
(Howe et al. 2021) genome browsers. Retrieved sequences 
were aligned with ClustalW (Thompson et al. 1994) and 
COBALT (Papadopoulos and Agarwala 2007). Contig with 

Fig. 1  G-banded ideogram of the chicken Z and W sex chromosomes 
showing cytological location of sex-linked genes including the game-
tologous genes shared between the Z and the PAR on the W (adopted 
from Schmid et al. 2005; Sazanov et al. 2006; **current study)
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BACs were detected in the Chicken FPC (ChickFPC) data-
base (Schmid et al. 2005; Kerstens and Groenen 2004–2008). 
The employed molecular (overgo hybridization) and cytoge-
netic (FISH) procedures are outlined below (see also Online 
resources 1 and 2 for more detail).

BAC library scanning

The chicken genomic BAC library CHORI-261 was prepared 
from a red jungle fowl DNA sample (Nefedov et al. 2003; 
BACPAC Genomics 2020) and screened using the overgo 
probe hybridization approach as described in detail else-
where (Romanov et al. 2003; Romanov and Dodgson 2006). 
Briefly, ~ 40-bp overgo probes comprised of two synthetic 
oligonucleotides with a complementary 8-bp region were 
designed in silico using consequently RepeatMarker (Smit 
et al. 1996–2010) and Overgo (Cai et al. 1998) web tools 
(Online resource 2). These probes were radioactively labeled 
with [32P]-deoxynucleotide triphosphates and hybridized at 
60 °C to BAC clone array filters. The screening resulted in pos-
itively hybridized BAC clones with their IDs deposited elec-
tronically in the Michigan State University-hosted Database 
of BACs Assigned to Chicken Genes and Markers (Resources 
2000–2013). Other avian BAC libraries were also screened 
using cross-species hybridization approach (Romanov and 
Dodgson 2006; Romanov et al. 2006, 2009, 2011).

FISH procedure

The FISH experiments were performed following the proto-
col as specified elsewhere (e.g., Sazanov et al. 2006; Blagove-
schensky et al. 2011; see also Online resource 3 for further 
detail). In short, the 96-h Brown Leghorn chick embryo 
cells were used to generate preparations of mitotic chromo-
somes using hypotonic treatment, fixation, and colchicine 

incubation. The double-color FISH using the respective BAC 
clone DNA was carried out basically in accordance with the 
instructions reported elsewhere (Florijn et al. 1995). A fluo-
rescent microscopic workstation (Ista, St. Petersburg, Rus-
sia) equipped with a CCD camera and the software program 
VideoTest-FISH was used to record hybridization signals.

Results

Overgo design and hybridization using chicken BAC 
library

For a starting point of the in silico overgo probe design, 
we used the mRNA sequence NM_017811.4 of the human 
orthologous UBE2R2 gene (located on chromosome 9p13.3) 
as a BLAST® search query and identified the best match 
amongst available chicken (Expressed Sequence Tags) EST 
sequences that was the chicken cDNA clone BU122359 
(see for more detail Online resource 1: Fig. S1-1). In the 
Ensembl database conforming to an older chicken assembly, 
BU122359 matched one W_random and one Z_random con-
tigs that might be indicative of two UBE2R2 homologs that 
exist on both GGAZ and GGAW (see for more detail Online 
resource 1: Table S1).

The designed 38-mer overgo (GCA ATG AGG AGT CGT 
GAC CTG CTC TCT ATG CTG TTG TA) only matched one 
W_random contig suggesting that it uniquely conformed to 
the W-linked UBE2R2L gene (see Online resource 1). The 
overgo probe was labeled and applied to screening the grid-
ded genomic BAC library CHORI-261. As a result, we found 
the following seven specific clones: CH261-019I23, CH261-
053P09, CH261-105E16, CH261-114G22, CH261-124O24, 
CH261-082I17, and CH261-095J14 (Table 1, Fig. 2).

Table 1  Summary of the 
chicken CHORI-261 BAC 
library scanning and FISH 
mapping results using seven 
BAC clones that contain the 
UBE2R2L gene

1   Test used to confirm positive clones: FISH, fluorescence in  situ hybridization; NT, not tested. 2 As 
detected in the Chicken FPC (ChickFPC) database (Schmid et al. 2005; Kerstens and Groenen 2004–2008). 
Only the clones identified in this study are listed. Others, other six clones shown in this table and included 
in this contig. 3 BAC clones that were also positive for, and FISH mapped to, UBAP2L2 (or UBAP2W; 
Sazanov et al. 2006; Blagoveschensky et al. 2011). 4 BAC clone that was also positive for UBE2R2L and 
UBAP2L2 but not tested (NT) by FISH in the previous (Sazanov et al. 2006; Blagoveschensky et al. 2011) 
and present studies

Hybridization 
technique

BAC clone ID (synonym) Confirma-
tion  test1

Contig 
with 
 BACs2

FISH assignment No. of 
chromosomes 
analyzed

overgo CH261-019I233 FISH Others GGAW 19
overgo CH261-053P094 NT Others NT –
overgo CH261-105E163 FISH Others GGAW 21
overgo CH261-114G223 FISH Others GGAW 30
overgo CH261-124O24 NT Others NT –
overgo CH261-082I17 NT Others NT –
overgo CH261-095J14 NT Others NT –
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Out of these seven BACs, there were four clones, 
CH261-105E16, CH261-114G22, CH261-019I23 and 
CH261-053P09, that also hybridized to the UBAP2L2 (or 
UBAP2W) specific overgo probe. These appeared to over-
lap with both the UBE2R2L and UBAP2L2 genes that can 
be confirmed by their close localization in the chicken 

genome assembly GRCg6a (Fig. 3a; Online resource 2: 
Fig. S2-1a). Indeed, the distance between these two genes 
was less than 20 Kb, with that between their Z-linked 
counterparts being even smaller (~ 2.5 Kb), making pos-
sible for a BAC clone to encompass the two neighboring 
genes.

Fig. 2  Results of the CHORI-261 BAC library screen using the 
W-linked UBE2R2L-specific overgo hybridized to three BAC array 
filters. Arrows indicate the positive hybridization signals that corre-
sponded to the respective BAC clones: a CH261-019I23; b CH261-

053P09; and c CH261-114G22 (upper arrow) and CH261-105E16 
(lower arrow). The same four BACs were also identified as positives 
for UBAP2L2 (or UBAP2W)

a

b

200kb 400kb 600kb 800kb 1.0Mb

W >Contigs

< ENSGALG00000048542UBAP2L2 > < ENSGALG00000027170 ENSGALG

< ENSGALG00000068031ENSGALG00000048307 >ENSGALG00000034125 > ENSGALG00000045335 >

< ENSGALG00000061233ENSGALG00000055269 >

ENSGALG00000065737 >< ENSGALG00000061846

ENSGALG00000061312 >

ENSGALG00000057418 >

Genes (Ensembl)

200kb 400kb 600kb 800kb 1.0Mb

1.00 Mb Forward strand

7.0Mb 7.2Mb 7.4Mb 7.6Mb 7.8Mb

Z >Contigs

< ENSGALG00000018534 ENSGALG00000055272 >IFNW1 > ENSGALG00000005831 >< KIAA1328 < ENSGALG00000053307UBE2R2 >

ENSGALG00000026547 > < ENSGALG00000030730 ENSGALG00000044725 > ENSGALG00000021378 >

< ENSGALG00000026884 < UBAP2 < DCAF12L2 < ENSGALG00000005806

< ENSGALG00000002452 ENSGALG00000027295 >IFN-A > < ENSGALG00000025660

< ENSGALG00000025641 < ENSGALG00000045636< ENSGALG00000057296 IFN-A >

ENSGALG00000025921 >ENSGALG00000058684 >

< ENSGALG00000065420IFN-A >

< ENSGALG00000057661ENSGALG00000067864 >

< ENSGALG00000056764IFNA3 >

IFN-A >

ENSGALG00000033669 >

ENSGALG00000065222 >

ENSGALG00000057052 >

Genes (Ensembl)

7.0Mb 7.2Mb 7.4Mb 7.6Mb 7.8Mb

1.00 Mb Forward strand

Fig. 3  Ensembl genome browser views for the GGAW (a) and GGAZ 
(b) genomic regions showing close localization of two gametologous 
gene pairs in the chicken genome assembly GRCg6a. Gene positions: 
a UBAP2L2 at 2,472.0.48,083 bp (forward strand) vs UBE2R2L (or 

ENSGALG00000048542) at 67,938.0.141,552  bp (reverse strand; 
green highlight); b UBE2R2 at 7,304,045.0.7,356,140  bp (forward 
strand; green highlight) vs UBAP2 at 7,358,707.0.7,496,787  bp 
(reverse strand)
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Overgo‑based cross‑species hybridization

Using the chicken UBE2R2L-specific overgo, we, in addi-
tion to the chicken BAC library, successfully screened 
four other avian libraries (Table 2). The number of posi-
tive clones ranged between 1 to 15. For instance, in the 
California condor BAC library CHORI-262, we identi-
fied one positive clone CH262-037I12 that was putatively 
mapped in silico to the W chromosome and was further 
used for FISH on the Z and W in this endangered species 
and other birds (Romanov et al. 2006, 2009; Modi et al. 
2009).

BAC‑based FISH

We used three out of the seven UBE2R2L-specific chicken 
BACs, i.e., CH261-019I23, CH261-105E16 and CH261-
114G22, to identify precise cytogenetic location of 
UBE2R2L on GGAW (Table 1). Previously, these three 
clones also produced co-localized signals for UBAP2L2 
(or UBAP2W) on GGAW but not for its Z-linked counter-
part UBAP2 (or UBAP2Z; Sazanov et al. 2006; Blagove-
schensky et al. 2011). The fine FISH mapping of the three 
BAC clones to GGAW proved unequivocally that they 
contained sequences of both UBE2R2L and UBAP2L2. 
Examples of mapping CH261-114G22 to GGAW using 
double-color FISH, in combination with different 
ATP5A1-positive BACs, are presented in Fig. 4. Remark-
ably, the ATP5A1-specific clone CH261-064F22, detected 
cytogenetically on GGAZ (Flpter, 0.14 ± 0.033; Blagove-
schensky et al. 2011), also co-localized on GGAW, along 
with the CH261-114G22 BAC clone containing the 
GGAW-specific UBAP2L2 DNA sequence (Fig. 4e).

Discussion

The origin of sex gonosomes in birds, mammals and reptiles 
appear to be different. While mammals use the XX/XY sys-
tem, the genetic sex determination independently evolved 
in birds, and utilizes the ZZ/ZW system (Matsubara et al. 
2006). Effective study of the gametologous genes underlying 
the ZZ/ZW system, especially for cross-species compari-
son, requires the availability of appropriate molecular and 
cytogenetic tools. In this study, we demonstrated efficiency 
in using gene sequence-derived overgos to discover specific 
BACs that, in turn, are applicable to FISH map gametologs 
to one or both gonosomes.

Within-species use of overgos to scan BAC libraries is, 
as a rule, a straightforward and reliable technique. Overgo-
based interspecies hybridization success rate may vary due 
to a number of reasons: (1) evolutionary distance from the 
chicken, a source for the used overgo probes, and respective 
sequence divergence, especially within non-coding regions 
(Modi et al. 2009); (2) genome coverage, i.e., genome rep-
resentation in a BAC library; (3) variation in quality of BAC 
DNAs arrayed on the gridded filters; and (4) specific and 
changeable BAC filter hybridization conditions in an indi-
vidual screen experiment and in a particular lab.

Comparative chromosome painting and FISH mapping of 
DNA clones, including BACs, have been broadly employed 
for studying chromosome rearrangements between chicken 
and other birds (e.g., Griffin et al. 1999; Shibusawa et al. 
2002, 2004). By implementing BAC-based FISH and using 
zebra finch BACs for a number of Z chromosome genes, 
including UBE2R2, Itoh et al. (2006) were able to map them 
to the zebra finch Z and W chromosomes. We previously 
mapped pairs of the chicken gametologous genes located 
in the PAR: ATP5A1Z—ATP5A1W and UBAP2–UBAP2L2 
(Sazanov et al. 2006; Blagoveschensky et al. 2011). Here, we 
cytogenetically localized in the chicken genome UBE2R2L, 

Table 2  Summarized results for screening the chicken, turkey, zebra finch, white-throated sparrow and California condor BAC libraries using the 
chicken UBE2R2L-derived overgo

Avian species Library ID No. of clones Coverage No. of 
positive 
BACs

Positive BAC IDs Reference

Chicken CHORI-261 73,000 11 7 See Table 1 Romanov et al. (2003)
Turkey CHORI-260 71,000 11.1 3 067M16, 085N18, 114O20 Romanov and Dodgson (2006)
Zebra finch TG_Ba 147,456 15.5 2 024E22, 025F15 Romanov and Dodgson (2006)
White-throated sparrow CHORI-264 196,354 21.1 15 002G18, 009P20, 033H09, 

037L14, 044L15, 072K22, 
080D07, 084C20, 084I16, 
098E16, 102G07, 116D17, 
143B09, 184F12, 191N02

Romanov et al. (2011)

California condor CHORI-262 89,665 14 1 037I12 Romanov et al. (2006)



2742 Biologia (2023) 78:2737–2746

1 3

a previously unmapped W-linked homolog of another 
gametologous pair, UBE2R2–UBE2R2L, but were unable 
to assign UBE2R2L-containing BACs to the Z gametolog. 
On the other hand, BAC filter hybridization using a lambda 
phage clone containing the W-linked turkey AD012W gene, 
also known as LOC100303669 or UBAP2W (accession 
numbers AY188758; see for further details Harry et al. 
2003; Sazanov et al. 2006; Romanov et al. 2019), resulted 

in discovery of five positive clones in the Texas A&M Uni-
versity genomic jungle fowl BAC library (code TAM31; 
Lee et al. 2003; Ren et al. 2003). Sazanov et al. (2006) and 
Blagoveschensky et al. (2011) cytogenetically assigned these 
BACs to Z but not to W in the chicken and Japanese quail. 
That could be because the turkey W-linked lambda phage 
clone cross-hybridized to the GGAZ-positive chicken BACs 
but not to GGAW-specific ones. Blagoveschensky et al. 

Fig. 4  In situ hybridization of 
chicken mitotic chromosomes 
with BAC clone DNA. a, b 
A metaphase plate showing 
localization for CH261-033F10 
(a, ATP5A1 on GGAZ and 
GGAW) and CH261-114G22 
(b, UBE2R2L and UBAP2L2 on 
GGAW). c, d A metaphase plate 
representing TAM31-099N01 
(c, ATP5A1 on GGAZ) and 
CH261-114G22 (d, UBE2R2L 
and UBAP2L2 on GGAW). e, 
f Signal location for CH261-
064F22 (green, ATP5A1 on 
GGAZ and GGAW) and co-
localized CH261-114G22 (red, 
UBE2R2L and UBAP2L2 on 
GGAW); and TAM31-100C09 
(f, green, ATP5A1 on GGAZ) 
and CH261-114G22 (red, 
UBE2R2L and UBAP2L2 on 
GGAW); same metaphase plate 
as c, d. Signals of hybridiza-
tion are shown by the arrows. 
Photographs a–d adopted from 
Blagoveschensky et al. (2011)
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(2011) also mapped three other W-specific chicken clones 
to both Z and W in the chicken and Japanese quail. This 
ambiguity in applying successfully clones as FISH probes 
to another heterochromosome within and between species 
might depend on how different sequences of particular 
genomic regions on Z and W are, and, to some extent, how 
rigorous or relaxed DNA–DNA hybridization conditions are 
in a given experiment. In any event, it can be deduced that 
BAC clones cross-hybridizing to opposite gonosomes carry 
sequences on the Z and W chromosomes with a lesser degree 
of divergence, which conform to areas of the gonosomes that 
have recently stopped recombining and are located inside the 
PAR (Blagoveschensky et al. 2011).

Using the chicken UBE2R2 mRNA sequence as a 
query, we additionally performed a BLAST® search as 
can be viewed in Fig. 5. In this BLAST® tree comprising 
25 birds, a basal group was represented by three galli-
form species, i.e., the chicken, turkey, and rock ptarmigan 
(Lagopus muta), suggesting that their UBE2R2 genes were 
most ancient by origin among the compared species. There 
was another gene cluster for a younger group of waterfowl 
including five species of geese, swans and ducks (order 
Anseriformes). A greater divergence relative to the chicken 
was characteristic of more recent evolutionary clades such 
as Accipitriformes, Apodiformes, Falconiformes, Psittaci-
formes and Passeriformes. Tinamou (Palaeognathae) got 
into this large group only due to availability of a partial 
mRNA sequence for this species that biased its divergence 
estimate, although in the respective protein tree (Online 
resource 1: Fig. S1-5b) it occupied a more basal position. 
Also, we noticed that some members of a younger order 

Passeriformes were scattered among various evolutionary 
tree branches (Fig. 5), which might reflect a perceptible 
diversification of genome organization within this clade. 
Similar relationships between various avian clades were 
also noticed based on UBE2R2/UBE2R2L gene/protein 
sequence alignments (Online resource 1: Figs. S1-4 and 
S1-5). The observed patterns of the UBE2R2/UBE2R2L-
related molecular evolution was largely in agreement with 
the current general understanding of evolution and tax-
onomy in the class Aves.

In a previous study (Modi et al. 2009), the California 
condor clone CHORI-262 37I12 positive for the chicken 
UBE2R2L overgo was cytogenetically mapped by FISH to 
the condor Z-linked homolog, with no signal being deter-
mined on the W chromosome. Similarly, use of the same 
condor W-linked clone on the black stork chromosomes 
revealed its localization on Zq near telomere (though the 
stork W was not looked at; Modi et al. 2009; Fig. 6). In the 
chicken, the UBE2R2 gene is located on Zp (Figs. 1 and 3) 
and demonstrates a pericentric inversion(s) in the zebra finch 
(Itoh et al. 2006). Similar pericentric inversion(s) of a much 
greater degree obviously occurred in the California condor 
and black stork, both species attributed to Ciconiiformes 
(see, however, a note on this controversial attribution for the 
condor in Romanov et al. 2009), with their UBE2R2 genes 
being on Zq, close to the telomere. The revealed inversion 
patterns are indicative of specific intrachromosomal rear-
rangements in the Z chromosome evolution in these four 
avian lineages. These observations imply that the Z chromo-
some gene content has been conserved during the 90–100 
million years since the split between the chicken and other 

Fig. 5  A distance tree of BLAST® search results produced using 
BLAST® pairwise alignments between the chicken UBE2R2L 
gene sequence query (XM_025144594.3; 3185  bp) and 24 other 
sequences. The search was limited to records that include birds (Aves; 

taxid:8782). Database: nt; tree method: Fast Minimum Evolution; 
maximum sequence difference: 0.75. The query is highlighted in yel-
low; green nodes denote hawks and eagles
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three lineages, while the chromosome has undergone signifi-
cant reorganization (Itoh et al. 2006).

Conclusions

In the present study, we established a reliable pipeline 
of bioinformatic, molecular and mapping tools used for 
genomic analysis and mapping to explore avian sex chromo-
somes (gonosomes) and genes they harbor. We bioinformati-
cally evaluated in the chicken genome a previously under-
studied pair of gametologous genes (i.e., Z- and W-linked 
homologs), UBE2R2 and UBE2R2L, and, using FISH, 
mapped the W-linked counterpart, UBE2R2L. Three of the 
seven used BAC clones were also cytogenetically assigned 
to GGAW and co-localized with another sex chromosome-
linked UBAP2L2 gene. Although the chicken UBE2R2L (i.e. 
W-linked) clones were FISH mapped to GGAW, they did not 
cross-hybridize to GGAZ, which was in accord with other 
similar observations on inconsistent cross-hybridization of 
specific clones between the two heterochromosomes within 
and among species. Overall, this and other relevant investi-
gations have established that cross-heterochromosome and 
interspecies hybridization can be useful for the scanning of 
avian BAC libraries and the FISH mapping of individual 
genes (including gametologs), genomic regions (like PAR), 
and whole chromosomes. This integrative research approach 
is instrumental in comprehending the evolutionary history in 
birds that will be further illuminated by future cytogenomic 
studies of various Aves clades.
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