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Abstract 
 

In this paper, we use neural networks in order to 
model the seasonal component of the residual variance 
of a mean-reverting Ornstein-Uhlenbeck temperature 
process, with seasonality in the level and volatility. We 
also use wavelet analysis to identify the seasonality 
component in the temperature process as well as in the 
volatility of the temperature anomalies. Our model is 
validated on more than 100 years of data collected 
from Paris, one of the European cities traded at Chi-
cago Mercantile Exchange. Our results show a signifi-
cant improvement over more traditional alternatives, 
regarding the statistical properties of the temperature 
process, which can be used in the context of Monte-
Carlo simulations for pricing weather derivatives. 

 
1. Introduction 
 

Since their inception in 1996, weather derivatives 
have known a substantial growth. Today, weather de-
rivatives are being used for hedging purposes by com-
panies and industries, whose profits can be adversely 
affected by unseasonal weather or, for speculative pur-
poses by hedge funds and others interested in capitaliz-
ing on those volatile markets. 

A weather derivative is a financial instrument that 
has a payoff derived from variables such as tempera-
ture, snowfall, humidity and rainfall. However, it is 
estimated that 98-99% of the weather derivatives now 
traded are based on temperature. Temperature contracts 
have as an underlying variable, temperature indices 
such as Heating Degree Days (HDD) or Cooling De-
gree Days (CDD) defined on average daily tempera-
tures. The list of traded contracts is extensive and con-
stantly evolving. In the Chicago Mercantile Exchange 

(CME) there are traded weather contracts based on an 
index of Cumulative Average Temperature (CAT) for 
European cities for May to September. A CAT index is 
defined as the sum of the daily average temperatures 
over the period of the contract. Generally, the payoff of 
a CAT call option at maturity is: 

 
( ) max(0, ( ))c CAT CAT K= −  

 
while, the payoff of a CAT put option is: 
 

( ) max(0, ( ))p CAT K CAT= −  
 

where K is the strike price of the contract. 
However, pricing weather derivatives is far from a 

straightforward task, since the underlying weather in-
dex (HDD, CDD, CAT, etc.) cannot be traded. Fur-
thermore, the corresponding market is relatively illiqu-
id. Consequently, since weather derivatives cannot be 
cost-efficiently replicated with other weather deriva-
tives, arbitrage pricing cannot directly apply to them. 
The weather derivatives market is a classic incomplete 
market, meaning that prices cannot be derived from the 
no-arbitrage condition, since it is not possible to repli-
cate the payoff of a given contingent claim by a con-
trolled portfolio of the basic securities.  

In pricing a weather derivative, dynamic modeling 
of the daily temperatures is generally considered more 
appropriate than modeling the temperature index. In 
principle, it leads to more accurate pricing, but on the 
other hand deriving an accurate model for the daily 
temperature is not a straightforward process. Observed 
temperatures show seasonality in all of the mean, va-
riance, distribution and autocorrelations and long 
memory in the autocorrelations. The risk with daily 

Presented in the 10th International Conference on Engineering Applications of Neural Networks (EANN). Thessaloniki, Greece (2007).



modeling is that small misspecifications in the models 
can lead to large mispricing in the contracts. 

The continuous processes used for modeling daily 
temperatures usually take a mean-reverting form, 
which has to descretized in order to estimate its various 
parameters. Once the process is estimated, one can 
then value any contingent claim by taking expectation 
of the discounted future payoff. Given the complex 
form of the process and the path-dependent nature of 
most payoffs, the pricing expression usually does not 
have closed-form solutions. In that case Monte-Carlo 
simulations are being used. This approach typically 
involves generating a large number of simulated scena-
rios of weather indices to determine the possible 
payoffs of the weather derivative. The fair price of the 
derivative is then the average of all simulated payoffs, 
appropriately discounted for the time-value of money; 
the precision of the Monte-Carlo approach is depended 
on the correct choice of the temperature process and 
the look back period of available weather data. 

In this paper, we address the problem of pricing the 
European CAT options for the city of Paris. The tem-
perature process on which we build our analysis is the 
mean-reverting process with seasonality in the level 
and volatility, proposed by Benth and Saltyte-Benth [1] 
- a generalisation of the process proposed earlier by 
Dornier and Querel [2]. This process is descretized in 
the form of an AR(1) model. 

Given the temperature model, the first step of this 
approach is to identify and remove from the tempera-
ture series the (possible) trend and the non-stationary 
seasonal cycle, hoping that what is left will be station-
ary. This is usually done by modelling the seasonal 
variations as deterministic and the same every year 
(seasonally stationary). The stochastic variability of the 
temperature is then moved entirely from the seasonal 
cycle into the residuals.  

In modelling the seasonal cycle deterministically, 
there are three basic approaches: a) the averaging 
method, b) the discrete Fourier transform (DTF) and c) 
the regression method. The first approach, calculates 
average daily temperatures for the year and then it 
smoothes them. It is the simplest approach, but it is 
also considered the most inaccurate. In the second ap-
proach, the power spectrum of the variance process is 
estimated, the peaks are reduced to the level of the 
background and then the power spectrum is adjusted 
and inverted back to real time. In the third approach, 
the temperatures are regressed on harmonics of 365 (or 
365.25) days. The DFT requires 4N years of data, 
while the regression method can be applied in any 
number of years. Both methods however, can be used 
to remove the seasonal cycle both in the mean and in 
the variance. For a detailed discussion on this subject 
see Jewson and Brix [3].  

Our approach in modelling the seasonal cycle is an 
extension and combination of the DFT approach and 
the regression method. More specifically, we use 
wavelet analysis (WT), -an extension of the DFT 
which superimposes sines and cosines to represent 
other functions, to decompose the temperature series 
into a series of (orthogonal) basis functions (wavelets) 
with different time and frequency locations. As a re-
sult, the wavelet decomposition brings out the structure 
of the underlying temperature series as well as trends, 
periodicities, singularities or jumps that could not be 
observed originally [4], [5]. The information from the 
wavelet analysis of more than 100 years of temperature 
data collected from Paris (from 1900 to 2000),  is then 
used in order to identify the trend and select the specif-
ic terms of the regression model – a truncated Fourier 
series. 

Once the trend and the seasonal cycle in the mean 
and the variance have being removed, one has to inves-
tigate the distributional properties of the residuals 
(anomalies) of the temperature process. To the extent 
that this part of the modeling approach and the initial 
temperature process are accurate, the residuals must 
follow a normal distribution with mean zero and stan-
dard deviation of one at all times of the year.  

However, we find that for the original Ornstein-
Uhlenbeck temperature process the hypothesis of nor-
mality for the residuals has to be rejected. And the 
same is true for various extensions of the original 
model, namely ARMA, ARFIMA and ARFIMA-
FIGARCH. This is not surprising, since the tempera-
ture for Paris (as for many other location for which 
weather derivatives are traded) is non-normally dis-
tributed and the above models are Gaussian.  

In that case, an approach that could be used is to 
first transform the temperatures so that they become as 
close as possible to normal, and then fit the tempera-
ture process. However, the disadvantage is that the 
fitted model does not maximize the likelihood of the 
original data.  

In this paper, we present a novel approach in which 
we model non-parametrically the variance of the re-
siduals of the Ornstein-Uhlenbeck model with a neural 
network. Since, we do not make any assumptions re-
garding the distributional properties of the residuals, 
this approach is well fitted to deal with difficult prob-
lems, like this one, where the distribution of the tem-
perature is not normal.  

Since, there is time dependency in the variance of 
the residuals of the original model, first we extract that 
variance by grouping the residuals in 365 groups (each 
group corresponding to a particular day of the  year), 
comprising 101 observations each (number of years in 
the data set) and then by taking the average for each 
group. Then, using those 365 values as our data set, we 



model the residual variance with a neural network hav-
ing as inputs the harmonics corresponding to the sea-
sonal cycles of the residuals, identified by a second 
wavelet analysis. 

The improvement regarding the distributional prop-
erties of the original model, is significant. The optical 
examination of the corresponding Q-Q plot reveals that 
the distribution is quite close to Gaussian, while the 
Jarque-Bera statistic of the original model is almost 
halved. Moreover, the observed autocorrelation of the 
residuals of the original model and that of the residuals 
of the model after modelling the residual variance with 
the neural network are quite close. In summary, our 
approach gives a good fit for the ACF and a reasonable 
(although quite improved) fit for the residuals.  

The rest of the paper is organized as follows. In sec-
tion 2, we describe the process used to model the aver-
age daily temperature in Paris. In section 3, we cali-
brate the temperature model for Paris based on the re-
sults of the wavelet analysis. In section 3.1, we per-
form wavelet analysis of the temperature series. In 
section 3.2, we estimate and then remove from the 
temperature the linear trend. In section 3.3, based on 
the results of the wavelet analysis we model the seaso-
nality component, we estimate it and then we remove it 
form the temperature. In section 3.4, we model the 
seasonal residual variance, again using wavelet analy-
sis as a guide in forming the corresponding model. In 
section 3.5, we estimate a number of alternative mod-
els to the original process, in order to address the ob-
served deviations from normality. In section 4, we 
present the effect on the temperature process of model-
ing the residual variance a neural network. Finally, in 
section 5 we conclude. 

 
2. Dynamic Modeling of the Temperature 
Process 
 

Many different models have been proposed in order 
to describe the dynamics of a temperature process. The 
common assumptions in all these models concerning 
the temperature are the following: it follows a pre-
dicted cycle, it moves around a seasonal mean, it is 
affected by global warming, it appears to have autore-
gressive changes and its volatility is higher in winter 
than in summer. 

Early models were using AR(1) processes or 
continuous equivalents (see for [4], [5], [6]). Other 
researchers (e.g., [2], [7]) have suggested versions of a 
more general ARMA(p,q) model. However  it has been 
shown, that all these models fail to capture the slow 
time decay of the autocorrelations of temperature and 
hence lead to significant underpricing of weather 
options [8]. In order to deal with this problem, more 

complex models were proposed, with a characteristic 
example being the model of Brody et al [9], which is 
an Ornstein-Uhlenbeck process. This model was fur-
ther extended, at first by replacing the noise part of the 
process (Brownian) by a fractional Brownian noise and 
then by a Levy process [10]. 

Our analysis is based on the model of Benth and 
Saltyte-Benth, where the temperature is expressed as a 
mean reverting Ornstein-Uhlenbeck process, i.e. 
 

( ) ( ) ( ( ) ( )) ( ) ( )dT t dS t T t S t dt t dB tκ σ= − − +                   (1)                              
 
where, T(t) is the daily average temperature, B(t) is a 
standard Brownian motion, S(t) is a deterministic func-
tion modelling the trend and seasonality of the average 
temperature, while σ(t) is the daily volatility of temper-
ature variations. In [1] both S(t) and σ2(t) are being 
modeled as a truncated Fourier series, i.e.: 
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From the Ito formula an explicit solution for (1) can 

be derived: 
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According to this representation T(t) is normally 

distributed at t and it is reverting to a mean defined by 
S(t). In this paper, the exact specification of models (2) 
and (3) is decided based on the results of wavelet anal-
ysis of the temperature series. 

 
3. Calibration of the Temperature Model  
 

In this section we derive the characteristics and dy-
namics of the daily temperature of the city of Paris, 
France. The data consists of 36,865 values, corres-
ponding to the average daily temperatures of 101 years 
(1900-2000). In Figure 1, we can see the descriptive 
statistics for the data. The distribution in clearly not 



normal, indicating a temperature process that generally 
hard to model. 

In order to identify the number of terms I1, J1 in (2) 
and I2, J2 in (3) we decompose the temperature series 
using a wavelet transform (WT), a generalization of the 
DFT and the windowed Fourier (WFT) transform. The 
wavelet transform is localized in both time and fre-
quency. Also it adapts itself to capture features across a 
wide range of frequencies, thus avoiding the assump-
tion of stationarity. In addition, wavelets have the abili-
ty to decompose a signal or a time-series in different 
levels.  

At each level j, we build the j-level approximation 
aj, or approximation at level j, and a deviation signal 
called the j-level detail dj, or detail at level j. We can 
consider the original signal as the approximation at 
level 0, denoted by a0. The words approximation and 
detail are justified by the fact that a1 is an approxima-
tion of a0 taking into account the low frequencies of a0, 
whereas the detail d1 corresponds to the high frequency 
correction. For detailed expositions on the mathemati-
cal aspects of wavelets we refer to (see for example 
[11], [12], [13]). 

 
 

3.1. Wavelet Analysis of the Temperature Se-
ries in Paris 

 
For the decomposition of the average daily tempera-

ture time-series the Daubechies 11 wavelet at level 11 
was used. In Figures 2 and 3, we can see all the ap-
proximations and details (respectively) of the decom-
posed time-series.  

It becomes clear from observing the first seven ap-
proximations (a1 to a7) and the detail d8 that there ex-
ists a cycle with a period of one year, as it was ex-
pected. Approximation a11 captures a long cycle with a 
period of 13 years. Also, in the same approximation an 
upward trend is observed through the whole period. 
Detail d8 also captures a product of two sinusoids, with 
a period of 1 and 7 years respectively.  

 

 
Figure 1. Daily average temperature data dis-
tribution statistics for Paris, France for the 
period 1900-2000. 

 
Details d10 and d11 reflect a 4-year and an 8-year 

seasonal effect, respectively. As we can see, both ef-
fects are intensive between t = 1-8,000 and t = 20,000-
36,865, while the effects between t = 8,000-20,000 are 
weak. Detail d9 represents a cycle with period close to 
2 years. The visible upward slope, which appears at 
approximations a8-a11, reflects the upward trend. The 
results of wavelet analysis indicate that an upward 
trend exists throughout the whole period. Finally, the 
lower details (d1 and d2) reflect the noise part of the 
time-series. A closer inspection of the noise part re-
veals seasonalities, which will be extracted later on. 

 
3.2. Estimating the Linear Component 

 
A discrete approximation to (4), which is the solu-

tion to the mean reverting Ornstein-Uhlenbeck process 
(1), is: 

 

{ }
( ){ }
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( 1) ( )

k
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              (5) 

 
which can be written as: 

 
( 1) ( ) ( ) ( )T t aT t t tσ ε+ = +                                        (6) 

 
where  

 
( ) ( ) ( )T t T t S t= −                (7) 

 
)()(~ tat σσ =                 (8) 

 
kea −=                 (9) 
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Figure 2. Daily temperature time-series (s) for 
Paris, France, approximations (aj) produced by 
the wavelet decomposition. 

 

 

 

 

 

 

 
Figure 3. Daily temperature time-series (s) for 
Paris, France, details (dj) produced by the 
wavelet decomposition. 



 
Figure 4. Fitting a trend to the average daily 
temperature data in Paris for the period from 
1900 to 2000. 
 

In order to estimate (6) we need first to remove the 
trend and seasonality components from the average 
temperature series. 

Firstly, we quantify the upward trend indicated by 
the results of the wavelet analysis by fitting a linear 
regression to the temperature data. The regression is 
statistically significant with intercept 4.3798⋅10-5 and 
slope 10.723. The upward trend is depicted in Figure 4. 
Subtracting the trend form the original data we obtain 
the de-trended temperature series. 

 
3.3. Estimating the Seasonal Component 

 
The results of the wavelet analysis (section 3.1) in-

dicate that the seasonal part of the temperature takes 
the following form: 
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           (10) 

 
The estimated parameters of the above model are as 

follows: a = -0.0001, b1 = -8.0214, b2 = -0.1459, b3 = -
0.1421, b4 = 0.1741, b5 = 0.2262, b6 = -0.0223, f1 = -
71.4571, f2 = 78.09, f3 = -166.1663, f4 = 787.586, f5 = 
598.1549 and f6 = 64.5991. The mean of the residuals 
is -1.5887e-008 and the standard deviation is 3.4153.  

In Figure 5 the seasonality of the temperature series 
for the first 10 years, is clearly visible.  

 
Figure 5. Average daily temperature data in 
Paris  (first 10 years of the time series). 

 
 
The seasonal component S(t), given by (10), can be 

seen in Figure 6. Next the temperature series is de-
seasonalized by removing S(t).  

 

 
Figure 6. Seasonal component, S(t), of the av-
erage daily temperature data in Paris  (first 10 
years of the time series). 

 
Using the de-trended and de-seasonalized tempera-

ture series we estimate the parameters of (6), which is 
an AR(1) process with zero constant. The mean rever-
sion parameter a = 0.7978 and it is statistically signifi-
cant (t = 254.05). The constant is very close to zero, as 
expected (-0.000989, t = 0.01865). For the overall 
model, the adjusted R2 = 0.6364 and F = 64542.19. In 
the original continuous-time dynamics model (1), the 
above value of a = 0.7978 corresponds to k = 0.2259. 

 
 
 
 



3.4. Modeling the Seasonal Residual Variance 
 
The distributional statistics of the residuals of the 

AR(1) model (6), indicate a significant deviation from 
the normal distribution. There is negative skewness (-
0.024913), positive kurtosis (3.277200) and the value 
of the Jarque-Bera statistic is 121.8394. Moreover, the 
autocorrelation of the residuals is significant for the 
several first lags (Figure 7), while the autocorrelation 
of the squared residuals indicates a time dependency in 
the variance of the residuals (Figure 8).  In Figure 8, we 
can clearly observe a seasonal variation. 

Since, for the residuals e(t) of the AR(1) is true that  
 

2( ) ( ) ( )e t t tσ ε=               (11) 
 
where ε(t) are i.i.d. N(0,1), we can extract the variance  

2 ( )tσ  as follows: Firstly, we group the residuals in 365 
groups, comprising 101 observations each (each group 
corresponds to a single day of the year). Then, by tak-
ing the average of the squares of each group we obtain 
the variance. 

From (8) it is true that: 
  

2
2

2

( )( ) tt
a

σσ =               (12) 

 
where a = 0.7978. 
 

In deciding which terms of a truncated Fourier se-
ries to use in order to model the variance σ2(t) (its em-
pirical values are being computed using equation 12), 
we perform again a wavelet analysis, which indicates 
the  presence of five cycles within σ2(t). A one-year 
cycle, a half-year cycle, a 1/4 of a year cycle, a 1/9 of a 
year cycle and a 1/18 of a year cycle. We model accor-
dingly the variance σ2(t), as follows: 
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Figure 7. ACF for the residuals of the AR(1) 
model of the de-trended and de-seasonalized 
Paris average daily data. 
 

 
Figure 8. ACF of the squared residuals of the 
AR(1) model of the de-trended and de-
seasonalized Paris average daily data. 
 

The values of the estimated parameters of (13) are: 
c0 = 4.2398, c1 = 0.4324, c2 = -0.2641, c3 = 0.0557, c4 = 
0.0843, c5 = -0.0131, d1 = 0.5610, d2 = 0.6195, d3 = 
0.0326, d4 = 0.0161 and d5 = -0.0421. 

The empirical values of the variance of the residuals 
(365 values) together with the fitted variance  

 
2 2 2( ) ( )t a tσ σ=            (14) 

 
can be seen in Figure 9.  We observe that the variance 
takes its highest values during the winter months, 
while it takes its lowest values during early Autumn.  

The standard deviation of the residuals is 0.6035, 
while the standard deviation of the remaining noise 
part is 1.0003 and its mean is 0.0018.  

 



 
Figure 9. Empirical variance and fitted va-
riance )(~ 2 tσ . 

 
In Figure 10, we can see the autocorrelation func-

tion of the squared residuals of the AR(1) process after 
dividing out the volatility (14) from the regression re-
siduals.  

 
Figure 10. ACF of the squared residuals of the 
AR(1) model after dividing out the volatility 
function )(~ tσ from the regression residuals. 
 

We observe that the seasonality has been removed, 
but there is still autocorrelation in the first three lags. 
Moreover, since the Jarque-Bera statistic is 67.6 with a 
p-value of 0.000000, we have to reject the hypothesis 
of normal distribution.  
 

 
Figure 11. Distribution statistics of the residu-
als of the AR(1) model after dividing out the 
volatility function )(~ tσ from the regression re-
siduals. 
 

 
3.5. Dealing with Non-Normality 

 
The findings of Benth and Saltyte-Benth [10] for 

the Copenhagen temperature series are very similar. 
Although, they did not use wavelet analysis to calibrate 
their models, they had managed to remove seasonality 
from the residuals, but their distribution proved to be 
non-normal. They suggested that a more refined model 
would probably rectify this problem, but they did not 
proceed in estimating one. In an earlier paper regarding 
Norwegian temperature data, Benth and Saltyte-Benth 
[1] suggested to model the residuals by a generalized 
hyperbolic distribution. However, as the same authors 
comment the inclusion of a non-normal model leads to 
complicated Levy process dynamics.  

We estimated a number of alternatives to the 
original AR(1) model. In particular we estimated an 
ARMA(3,1) model, a long-memory homoscedastic 
ARFIMA model and a long-memory heteroscedastic 
ARFIMA-FIGARCH model.  

As we can see in the respective Q-Q plots of the 
residuals in Figures 12, 13 and 14 the hypothesis of 
normality has to be rejected. The Jarque-Bera statistic 
is above 91 for the ARMA(3,1) model, above 94 for 
the ARFIMA model and above 114 for the ARFIMA-
FIGARCH model. In contrast with [8] and [14] our 
results represent a disimprovement of our original 
AR(1) process. As the complexity of the models 
increases, the Jarque-Bera statistic becomes larger 
which suggest that the AR(1) model is the most 
appropriate. 
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Figure 12. Q-Q plot of the residuals of an AR-
MA(3,1) model. 

 
 

 
Figure 13. Q-Q plot of the residuals of an AR-
FIMA model. 
 

 

 
 
Figure 14. Q-Q plot of the residuals of an AR-
FIMA-FIGARCH model. 

 
Concluding, although the AR(1) model probably is 

not the best model for describing temperature 
anomalies, increasing the model complexity (ARMA, 
ARFIMA, ARFIMA-FIGARCH) and thus the 
complexity of theoretical derivations in the context of 
weather derivative pricing does not seem to be 
justified.  

 
4. Modeling the Seasonal Residual Va-
riance with Neural Networks 
 

Next, we model the seasonal residual variance with 
a backpropagation neural network, with one hidden 
layer, a bias term and ten hidden units (Figure 15).  For 
a single-hidden-layer architecture, the number of hid-
den units λ is an unambiguous descriptor of the dimen-
sionality p of the parameter vector; p = (m + 2)λ + 1. In 
this case p = (10 + 2)10 + 1 = 121. The corresponding 
number of observations/parameters ratio is relatively 
low (n/p = ∼3).  
 
4.1. The Neural Network Model 

 
Our hypothesis here is that between the seasonal 

variance and the ten harmonics identified by the wave-
let analysis there is a deterministic relationship φ(•) of 
the general form: 
 

2 ( ) (sin(2 / 365),sin(4 / 365),
sin(8 / 365),sin(18 / 365),
sin(36 / 365),cos(2 / 365),
cos(4 / 365),cos(8 / 365),
cos(18 / 365) ,cos(36 / 365))

t t t
t t

t t
t t
t t

σ ϕ π π
π π
π π
π π
π π

=

           (15) 

 
We estimate φ(•) non-parametrically with the neural 

network g(•). Given an input vector x (the harmonics) 
and a set of weights w (parameters), the network re-
sponse (output) gλ(x;w) is: 
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where, w[1]

i,j is a weight corresponding to the connec-
tion between the ith input and the jth hidden unit, 
w[1]

m+1,j is a bias term corresponding to the jth hidden 
unit, w[2]

j is the weight of the connection between the 
jth hidden unit and the output unit, and w[2]

λ+1 is the bias 
term of the output unit, and the function γ(•) is a sig-
moidal function.  



 
 
Figure 15. A neural network for modelling the 
seasonal residual variance.  

 
An estimate of the parameter vector w is obtained 

by minimising iteratively the ordinary least squares 
cost functional: 
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where σ2(t) is the tth target output variance and n is the 
number of training vectors (365). The loss function in 
(17) gives us a measure of accuracy with which the 
estimator fits the observed data but it does not account 
for the estimator’s (model) complexity. Given a suffi-
ciently large number of free parameters, p, the neural 
estimator can fit the data with arbitrary accuracy. 
 
4.2. Removing the Irrelevant Connections 
 

Once, the parameters of the neural model (16) are 
estimated, we have to deal with the presence of flat 
minima (potentially many combinations of the network 
parameters corresponding to the same level if the em-
pirical loss), especially if the statistical properties of 
the model are of importance, as it is the case in this 
complex financial application. In order to identify a 
locally unique solution, we have to remove all the irre-
levant parameters, that is the parameters that do not 
affect the level of the empirical loss.  

For this purpose we use the Irrelevant Connection 
Elimination scheme (ICE) [15], which is much less 
computationally demanding than other alternatives 

since, although it uses the full Hessian of Ln, it does not 
require inverting the Hessian matrix – a common re-
quirement of other algorithms. ICE is based on the 
Taylor’s approximation of the empirical loss:  
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From (18) ICE derives the “saliencies” S(wi), i.e., 

the contribution of wi to δLn, when a small perturbation 
δwk is added to all connections. as: 
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At a well-defined local minimum (19) can be sim-

plified by setting gi = 0, although this is not a require-
ment. The method can be summarised in the following 
steps: 
 
Step 1: Train to convergence. 
Step 2: Compute the saliencies S wi( )   
Step 3: Deactivate the connection with the least asso-
ciated saliency, unless it was reactivated in step 5. 
When a pre-specified maximum number of steps is 
been reached, then the algorithm STOPS. 
Step 4: Train further for a small number of epochs, 
until the training error has stabilised. 
Step 5: If the training error has increased, reactivate 
the connection, otherwise remove it. Then go to step 3. 
 

Because of possible dependencies in the connec-
tions, it is not advisable to remove more than one con-
nection at a time (the removal of one connection can 
affect the standard errors and saliencies of others). This 
does not pose any computational problems to ICE, 
since computing the Hessian is the same order of com-
plexity as computing the derivatives ∂Ln/∂wi during 
training.  

After applying the algorithm ICE to the estimated 
network, the number of parameters is reduced to 29 out 
of 121 originally. The observations/parameters ratio 
now takes the value of n/p = 12.6 (from 3 originally). 
Roughly speaking, the reduced network is the same 
order of complexity with a fully connected network 
with two hidden units. 



4.3. Statistics for the Neural Model and the Re-
siduals of the Ornstein-Uhlenbeck Process  
 

The summary statistics for the reduced neural mod-
el of the seasonal variance (removing the irrelevant 
connections) are given in Table 1. As we can see, the 
coefficient of determination (R2) of the model (adjusted 
for degrees of freedom), as well as the R2 of the linear 
regression of the predicted variances vs. the target 
variances are quite high. 

 
Table 1: Neural Model Summary Statistics 
Average Squared Error (ASE) 0.007778 
Standard error of the estimate (SE) 0.088193 
Mean absolute error (MAE) 0.070264 
Empirical loss (Ln) 0.003889 
Generalised Cross Validation (GCV) 0.017405 
Final Prediction Error (FPE) 0.015492 
R-squared 64.63906 
R-squared (adjusted for d.f.) 59.22428 
R-squared for the linear regression of 
forecasted variance vs. target variance 64.97905 

 
In Table 2 we can see the variable significance sta-

tistics for the network inputs (the input X1 corresponds 
sin(2πt/365), and so on). The relevance S of the input 
variables to the model is quantified by the partial de-
rivative of the empirical loss (17) to this variable. The 
sampling variance of the relevance metric is quantified 
by performing random sampling from the limiting joint 
distribution of the parameters (it is assumed multivari-
ate normal). For more details on this technique refer to 
[16]. 

 
Table 2: Neural Model Variable Significance 
Estimation Statistics 

VAR S=dLn/dX St.Dev. t-value 
X7 0.00243 0.00020 12.37317 
X1 0.00184 0.00014 13.00622 
X6 0.00184 0.00014 12.89321 
X2 0.00158 0.00316 0.49970 
X10 0.00129 0.00259 0.49982 
X3 0.00091 0.00006 15.16516 
X4 0.00076 0.00005 16.57073 
X8 0.00057 0.00114 0.49975 
X9 0.00024 0.00007 3.65349 
X5 0.00006 0.00011 0.50023 

 
 

Input variables in Table 2 are sorted in descenting 
magnitude of the relevance metric S. The most impor-

tant and statistically significant variables appear to be 
X7, X1, X6, X3, X4 and X9, i.e.,  

 
cos(4πt/365) 
sin(2πt/365)  
cos(2πt/365) 
sin(8πt/365) 
sin(18πt/365) 
cos(18πt/365) 
 
According to this, the one year cycle (the terms con-

taining 2πt) and the 1/9th of a year cycle (the terms 
containing 18πt) appear to be significant. The half year 
cycle (the term containing 4πt) and the 1/4th of the year 
cycle (term containing 8πt) also appear to be signifi-
cant. We also note that since the input cos(2πt/365) 
does not appear to be significant, the half year cycle 
takes its highest value at the beginning of each year. 
Also since the input cos(8πt/365) does not appear to be 
significant, the 1/4th of the year cycle takes the value of 
zero at the beginning of each year. 

Proceeding now to the analysis of the residuals of 
the Ornstein-Uhlenbeck temperature process, when 
using the neural network for estimating nonparameti-
cally the seasonal variance, the first thing we observe 
in the ACF of the residuals (Figure 16) is that the first 
three lags are significant. This is in line with the ob-
served behaviour of the temperature series. 

  

 
Figure 16. ACF of the squared residuals of the 
Neural Network after dividing out the volatility 
function )(~ tσ from the regression residuals. 
 
 
 
 



 
Figure 17. Q-Q plot of the residuals of the 
Neural Network calculated from 101 years of 
data. 
 

 
Figure 18. Distributional statistics for the resi-
duals of the Neural Network calculated from 
101 years of data. 
 

Furthermore, the improvement regarding the distri-
butional properties of the original model, is significant. 
The optical examination of the Q-Q plot of the residu-
als in Figure 17, reveals that the distribution is quite 
close to Gaussian, while the Jarque-Bera statistic of the 
original model is almost halved (Figure 18).  
 
5. Summary 
 

In this paper, in the context of an Ornstein-
Uhlenbeck temperature process we have used wavelet 
analysis to identify the seasonality component in the 
temperature process as well as in the volatility of the 
residuals, for the average daily temperature in Paris. 
The temperature anomalies, however, deviated to some 
extend from normality. In an attempt to rectify this 
problem, we estimated a number of alternatives to the 

original AR(1) model. In particular we estimated an 
ARMA(3,1) model, a long-memory homoscedastic 
ARFIMA model and a long-memory heteroscedastic 
ARFIMA-FIGARCH model. However, none of these 
alleviated the problem.  

In the next step of our analysis we have used a 
neural network to model the seasonal volatility of the 
residuals. We “localized” the neural model, i.e., we 
removed the irrelevant connections of the estimated 
model, with the algorithm ICE, which quantifies the 
contribution of each connection to the change of the 
empirical loss, when a small perturbation is added to 
all connections. 

Employing a neural network to the estimation of the 
seasonal volatility of the residuals, led to a significant 
improvement regarding the distributional properties of 
the original model.  
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