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GLOBAL BAHADUR
REPRESENTATION FOR

NONPARAMETRIC CENSORED
REGRESSION QUANTILES
AND ITS APPLICATIONS
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OLIVER LINTON
University of Cambridge

YINGCUN XIA
Nanjing University and National University of Singapore

This paper is concerned with the nonparametric estimation of regression quantiles of
a response variable that is randomly censored. Using results on the strong uniform
convergence rate of U-processes, we derive a global Bahadur representation for a
class of locally weighted polynomial estimators, which is sufficiently accurate for
many further theoretical analyses including inference. Implications of our results are
demonstrated through the study of the asymptotic properties of the average deriva-
tive estimator of the average gradient vector and the estimator of the component
functions in censored additive quantile regression models.

1. INTRODUCTION

Quantile regression (Koenker and Bassett, 1978), originally designed to render
estimators robust against extreme values or outliers among the error terms (Huber,
1981), has since attracted tremendous interest both in theoretical statistics and in
applied area; see Koenker (2005) and Koenker and Bilias (2001) for a comprehen-
sive literature review. Equally, regression problems based on censored data have
always been an important topic in survival analysis, e.g., the accelerated failure
time model, as well as in labor economics (Buchinsky, 1994) and econometrics,
such as the well-known Tobit model. A direct consequence of censoring is that it
causes the error term to deviate from the normal distribution, and the conditional
moment restrictions of the uncensored model might be violated. Regression quan-
tiles are among the natural choices for analyzing censored data, as they are more
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“resilient” against such distortions. Most of the existing studies in quantile regres-
sion with censoring data adopted a parametric approach; see, e.g., Buckley and
James (1979), Koul, Susarla, and Van Ryzin (1981), Ritov (1990), Ying, Jung,
and Wei (1995), Honoré, Khan, and Powell (2002), Bang and Tsiatis (2002), and
Heuchenne and Van Keilegom (2007b). In this paper we focus on nonparametric
estimation of regression quantiles, i.e., no preassumption is made on the form of
the conditional quantile function, besides that it should satisfy a certain degree of
smoothness. We also relax the requirements imposed on the censoring scheme,
allowing the (usually unknown) distribution function of the censoring variable to
be dependent on the covariates.

A small number of estimators exist for nonparametric censored quantile regres-
sion models, in most cases focusing on the standard random censoring model.
Dabrowska (1992) and Van Keilegom and Veraverbeke (1998) proposed non-
parametric censored regression estimators based on quantile methods. Lewbel
and Linton (2002) considered the case of fixed censoring, extended by Chen,
Dahl, and Khan (2005) to allow for heteroskedasticity, while Heuchenne and Van
Keilegom (2007a, 2008) examined a nonparametric regression model where the
error term is independent of the covariates. Linton, Mammen, Nielsen, and Van
Keilegom (2011) consider univariate regression models with a variety of censor-
ing schemes and employ estimation methods based on hazard functions.

Bahadur (1966) representation is a useful tool to study the asymptotic prop-
erties of estimators, especially when the loss function is not smooth, such as in
M-estimation and quantile regression. As noted in He and Shao (1996), Bahadur
representation approximates the estimator by a sum of independent variables
with a smaller-order remainder. Consequently, many asymptotic properties use-
ful in statistical inference can be derived easily from the Bahadur representa-
tion. Under different settings, a number of different Bahadur representations have
been obtained. For example, Carroll (1978) and Martinsek (1989) derived the
strong representations for location and regression M-estimators with preliminary
scale estimates; Babu (1989) and Pollard (1991) obtained the Bahadur repre-
sentation for the least absolute deviation regression. Portnoy (1997) studied the
Bahadur representation of quantile smoothing splines, and Portnoy (2003) stud-
ied the Bahadur representation for the Cox and censored quantile regression.
Chaudhuri (1991b) investigated the pointwise Bahadur representation of nonpara-
metric kernel quantile regression. In nonparametric settings, global or uniform
asymptotic theory (Bickel and Rosenblatt, 1973; Mack and Silverman, 1982) is
essential for conducting statistical inference. Because of this, uniform Bahadur
representations are more useful than their pointwise counterparts. Kong, Linton,
and Xia (2010) and Guerre and Sabbah (2012) obtained the uniform Bahadur rep-
resentation for the quantile local polynomial estimators. Wu (2005) and Zhou and
Wu (2009) investigated the Bahadur representation for nonstationary time series
data under both parametric and nonparametric settings.

In this paper we introduce a nonparametric local polynomial estimator of the
quantile regression function and its derivatives, derived from minimizing a locally
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weighted objective function where the weights are estimated from the data to
adjust for the presence of censoring. Under some regularity conditions, we will
obtain the global Bahadur representation for these estimators and show that it
can achieve the optimal rate of convergence (Stone, 1980). The implications of
the presence of random censoring are twofold. First, it complicates the estima-
tion, especially when the censoring distribution can depend on the covariates,
as we allow.1 Second, the derivation of the Bahadur representation is much more
involved, as the behavior of the estimated, thus random, weights needs to be taken
into account.

In Section 5 we present two examples to showcase the implications of our
results. The first concerns the estimation of the average gradient vector. Again,
this has been studied under two separate settings: Chaudhuri, Doksum, and
Samarov (1997), Wu, Yu, and Yu (2010), and Kong and Xia (2012) in quan-
tile regression, while Lu and Cheng (2007) and Xia, Zhang, and Xu (2009) for
censored mean regression. The second example focuses on the additive model,
which has been used to model the regression quantiles (Linton, 2001; De Gooijer
and Zerom, 2003; Yu and Lu, 2004) or regression mean but with censored data
(de Uña Álvarez and Roca-Pardiñasa, 2009). Yet no one has investigated the use
of the additive model for estimating regression quantiles under censoring.

Through these two examples, it will become clear that our results are partic-
ularly useful for conducting inference about a variety of quantities of interest.
The representations we have obtained can be directly used to obtain consistent
standard errors in the case where a parametric quantity like the average gradi-
ent vector is of interest or where one wants a pointwise confidence interval for
a function like the additive component. They can also be used to obtain uniform
confidence bands for such functions, since the detailed probabilistic analysis of
the leading terms follows from the well-established results for kernel regression
and density estimators (Bickel and Rosenblatt, 1973; Johnston, 1982). We remark
that the recent work of Belloni, Chernozhukov, and Fernández-Val (2011) has
provided tools for inference about nonparametric quantile regression based on the
series methodology, but this is done in the absence of censoring.

2. THE MODEL AND ITS ESTIMATION

Suppose {(Ti ,Xi ), ı = 1, . . . ,n} are independent and identically distributed (i.i.d.)
observations generated according to

Ti = Q(Xi )+ εi , 1 ≤ i ≤ n, (1)

where Ti is the observed value of the univariate dependent variable T , while Xi is
the observed value of the p-dimensional covariates X. Here, Q(.) is an unknown
but smooth function, and εi is the “error term,” which conditional on X has an τ th
quantile equal to zero. In other words, Q(Xi ) is the τ th quantile of Ti conditional
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on Xi . Or equivalently, through the use of the quantile loss of function, it is de-
fined as

Q(Xi ) = argmin
a
Eρτ (Ti −a|Xi )

where ρτ (s) = |s|+ (2τ −1)s.
In this paper we consider the case where Ti is not necessarily observable.

Instead, it is subject to random right censoring; the methodology can be easily
adapted for left censoring. Let Ci denote the censoring variable, with conditional
survival function G(.|Xi ) given Xi ; i.e., Ci is not required to be independent
of Xi . The observations are made on the triple ζi = (Yi , Xi ,di ), where

Yi = min{Ti ,Ci } = min{Q(Xi )+ εi ,Ci }, di = I{Ti ≤ Ci }, (2)

are, respectively, the observed (possibly censored) value of the response vari-
able and the censoring indicator. Jointly (1) and (2) specify a censored quantile
regression model, and our main objective is the estimation of Q(.) and its partial
derivatives, assuming that Q(.) is smooth enough to have partial derivatives up to
order k.

For any fixed point x ∈ R p, the local polynomial estimation of Q(x) and its
partial derivative is based on the fact that Q(.) can be approximated by its k-order
Taylor expansion in the neighborhood of x,

Q(X) ≈ Q(x)+ ∑
1≤[u]≤k

Du Q(x)

u!
(X−x)u, (3)

where u = (u1, . . . ,up) denotes a generic p-dimensional vector of nonnegative
integers, [u] = ∑p

i=1 ui , u! = ∏p
i=1 ui !, xu = ∏p

i=1 xui
i with the convention that

00 = 1, and Du denotes the differential operator ∂ [u]/∂xu1
1 · · ·∂x

up
p . Let A = {u :

[u] ≤ k} and n(A) = �(A), the cardinality of A.
We start with the ideal scenario, where Zi = {Ti ,Xi ,Ci }, i = 1, . . . ,n, are

directly observable. The estimates of Q(.) and its partial derivatives can be
obtained by minimizing the function below with respect to c = (cu)u∈A ∈ Rn(A),
a vector of length n(A),

n

∑
i=1

ρτ

{
Ti − c�Xi,x(δn, A)

}
I{|Xi,x| ≤ δn}, Xi,x = Xi −x, (4)

where Xi,x = Xi −x, δn → 0, as n → ∞, is a smoothing parameter, |.| stands for
the uniform norm, and for any x ∈ R p, x(δn, A) = (x(δn,u))u∈A, with x(δn,u) =
δ−[u]

n xu. The use of the uniform kernel I (|.| ≤ δn) is for simplification purposes
only (Chaudhuri 1991a, 1991b); I (.) can be replaced by a general multivariate
kernel function, e.g., Kδn (.) = K (./δn), where K (.) is some probability density
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function in R p with a compact support. Results presented in this paper are still
valid under such generalization.

The problem with simply submitting Yi for Ti in (4) is that Q(,Xi ) may not be
τ th quantile of Yi unless Yi = Ti , or equivalently, di = 1. One may then be tempted
to restrict the summation in (4) over those i’s such that di = 1; however, this will
result in a biased estimator. There are currently three possible ways to deal with
the presence of censoring. One is by replacing ρτ

{
Ti − c�Xi,x(δn, A)

}
with its

conditional expectation given (Yi ,Xi ,di ); see Honoré et al. (2002) for its applica-
tion to the linear quantile regression with Ci assumed to be independent of both Xi

and Ti . The second is to apply the “redistribution-of-mass” idea of Efron (1967);
see also Portnoy (2003), Peng and Huang (2008), and Wang and Wang (2009) for
applications of this idea in linear quantile regression. The third strategy, the one
adopted in this paper, is based on the observation that, if Ti and Yi are independent
conditional on Xi , thenE[di/G(Yi |Xi )|Xi ,Ti ] =E[di/G(Ti |Xi )|Xi ,Ti ] = 1, and,
consequently,

E[di/G(Yi |Xi )ρτ{Yi −a)] = E[ρτ{Ti −a)].

See also Bang and Tsiatis (2002). Incorporating this observation with (4) implies
that we should instead minimize the target function

n

∑
i=1

di

G(Yi |Xi )
ρτ

{
Yi − c�Xi,x(δn, A)

}
I{|Xi,x| ≤ δn}.

In practice, G(.|Xi ) is unknown and has to be estimated. A most relevant estimator
is the local Kaplan-Meier estimator Ĝn(.|Xi ) (Gonzalez-Manteiga and Cadarso-
Suarez, 1994), defined as

Ĝn(t |x) =
n

∏
j=1

⎧⎪⎪⎨
⎪⎪⎩1− Bnj (x)

n
∑

k=1
I (Yk ≥ Yj )Bnk(x)

⎫⎪⎪⎬
⎪⎪⎭

βj (t)

, (5)

where βj (t) = I (Yj ≤ t,dj = 0), and Bnk(x), k = 1, . . . ,n is a sequence of non-
negative weights adding up to 1. We choose Bnk(.) to be the local polynomial
“equivalent kernel/weight”; see Fan and Gijbels (1996) and Masry (1996) for
more details. Specifically, assuming that G(.|x) is smooth enough to have deriva-
tives up to order κ1, define

Bnk(x) = e�
1

[
�̃n(x)

]−1Xk,x(hn, A1)I{|Xk,x| ≤ hn}, (6)

�̃n(x) = 1

n

n

∑
k=1

I{|Xk,x| ≤ hn}Xk,x(hn, A1)Xk,x(hn, A1)
�,

where e1 from now on stands for a column vector (1,0, . . . ,0)� of length clear
from the context, A1 = {u : [u] ≤ κ1}, and hn ∈ R+ is yet another smoothing
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parameter, possibly different from δn used above. Again, the uniform kernel
I{|.| ≤ hn}, could be replaced by any aforementioned appropriate multivariate
kernel.

Substituting Ĝn(.|.) for G(.|.) in (7), we propose to estimate {Du Q(x) :
[u] ∈ A} by ĉn(x) = (ĉn,u(x))u∈A, the minima of

de f= argmin
c

n

∑
i=1

di

Ĝn(Yi |Xi )
ρτ

{
Yi − c�Xi,x(δn, A)

}
I
{|Xi,x| ≤ δn

}
. (7)

Since 0 < τ < 1, ρτ (s) goes to infinity as |s| → ∞. Thus the minima of (7) always
exists.

Instead of the commonly used Nadaraya-Watson weight (Wang and Wang,
2009) or Gasser-Müller’s type weight (Gonzalez-Manteiga and Cadarso-Suarez,
1994), the reason that we opt for a weight as described in (6) is so we can have
a K-M estimator with bias of order O(hκ1+1

n ), which is “negligible relative to
variance” for large κ1.

A minor inconvenience from using the “local polynomial weight” is that the
corresponding K-M estimator (5) is not necessarily a proper survival function,
as Bnk(.) could be negative. However, this shouldn’t cause much concern. On
one hand, the almost sure representation of the local K-M estimator (5) does not
rely on Bnk(.) being positive (Gonzalez-Manteiga and Cadarso-Suarez, 1994). On
the other hand, in practice, a simple truncation can always be applied to ensure
0 ≤ Ĝn(.|x) ≤ 1; see Spierdijk (2008) for a similar observation.

3. NOTATIONS AND ASSUMPTIONS

Let D be an open convex set in R p and for s0 = l + γ , with nonnegative integer
l and 0 < γ ≤ 1, we say a function m(.) : R p → R has the order of smoothness
s0 on D, denoted by m(.) ∈ Hs0(D), if it is differentiable up to order l and there
exists a constant C > 0, such that∣∣Dum(x1)− Dum(x2)

∣∣≤ C |x1 −x2|γ , for all x1,x2 ∈D and [u] = l.

For any t ∈ [−1,1]p, denote by t(A) the vector of length n(A) with elements
(tu)u∈A. Let �(A) be the n(A)×n(A) matrix

�(A) =
∫

[−1,1]p
t(A)t(A)�dt.

Here, t(A1) and matrix �(A1) are similarly defined. It is assumed throughout this
paper that both matrices, �(A) and �(A1), are invertible.

Let f (.) be the marginal probability density function of Xi . For any x ∈ R p,
denote by g(.|x), f0(.|x), and fε(.|x) the probability density functions of Ci , Ti ,
and εi conditional on Xi = x. Let

F0(t |x) = Pr(Ti ≤ t |Xi = x), Fε(t |x) = Pr(εi ≤ t |Xi = x)
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We assume the following conditions hold throughout the paper unless stated
otherwise.

Assumption A1. There exists an open convex set D, such that f (.) is positive
on D and f (.) ∈ Hs1(D), for some s1 > 0.

Assumption A2. The conditional quantile function Q(.) ∈ Hs2(D) for some
s2 > 0.

Assumption A3. Assume fε(t |x), when seen as a function of x, belongs to
Hs3(D) for some s3 > 0, uniformly in t in a neighborhood of zero. Moreover,
fε(0|x) is bounded away from zero uniformly in x ∈D, and its first-order deriva-
tive with respect to t exists and is continuous in a neighborhood of zero for all
x ∈D.

Assumption A4. The censoring variable {Ci } is conditionally independent of
εi given Xi ; and for any x ∈ D, there exists some finite π0, which might depend
on x, such that G(π0|x) = 0 and inf

x
P(Ci = π0|x) > 0.

Assumption A5. Functions f0(t |x) and g(t |x), when seen as functions of x,
both belong to Hs4(D) for some s4 > 0, uniformly in t.

Assumption A6. The bandwidth hn in the local K-M estimator is chosen such
that nh2s4+p

n / logn → 0, nh3p
n / logn → 0, nh p+4

n / logn < ∞;

Assumption A7. The relationship between the two smoothing parameters δn

and hn is such that δn = o(hn) and nh2p
n /(δ

p
n logn) → ∞.

Remark. Assumptions A1–A3 are standard assumptions of local polynomial
estimation in quantile regression; see also Chaudhuri et al. (1997). Among them,
Assumption A2 implies that, if |X−x| ≤ δn , then the error resulted from approx-
imating Q(X) by the [s2]-order Taylor expansion

Qn(X,x) = ∑
u∈A

cn,u(x)[(X−x)/δn]u

is of order O(δ
s2
n ), uniformly over {(X,x) : X,x ∈ D, |X − x| ≤ δn}. Assump-

tion A4 suggests that Ti and Ci need not be independent if this is a result of
their mutual dependency on Xi . Also, given Xi , there is a positive mass on the
upper boundary of the support of the censoring variable. This guarantees that
di/Ĝn(Yi |Xi ) is uniformly finite in large samples; this condition can always
be met by artificially censoring all observations at some point π0(≤ maxi Yi ).
Assumptions A5–A6 are imposed such that the local K-M estimator Ĝn(.|Xi ) ad-
mits the almost sure representation in terms of a sum of independent errors.
Note that Assumption A6 is stronger compared to its counterpart in Gonzalez-
Manteiga and Cadarso-Suarez (1994) or Wang and Wang (2009), which focused
on univariate X. This is so such that the bias of the K-M estimator is neg-
ligible relative to its variance. Assumption A7 is imposed such that the
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higher-order remainder term in the almost-sure representation of Ĝn(.|.) is
negligible.

To facilitate the subsequent discussion in Section 5, we will focus on the esti-
mation of cn(x) = (cn,u(x))u∈A with cn,u(x) = δ[u]

n Du Q(x)/u! with x = Xj , j =
1, . . . ,n. We will derive the uniform convergence rate and the Bahadur-type rep-
resentation of ĉn(Xj ), the estimator of cn(Xj ),

ĉn(Xj ) = argmin
c ∑

i∈Sn(Xj )

di

Ĝn(Yi |Xi )
ρτ

{
Yi − c�Xi j (δn, A)

}
, Xi j = Xi −Xj

(8)

where the index set Sn(Xj ) and its cardinality are defined as

Sn(Xj ) = {i : 1 ≤ i ≤ n, i 
= j, |Xi j | ≤ δn}, Nn(Xj ) = �(Sn(Xj )).

The reason for us to consider the above leave-one-out version is the same as given
in Chaudhuri et al. (1997), i.e., to simplify the conditioning arguments used at
various stages of the proofs. The non-leave-one-out estimator 7 is asymptotically
first-order equivalent to its leave-one-out counterpart.

4. CONVERGENCE RATE AND ASYMPTOTIC REPRESENTATION

Our first result concerns the almost sure representation of the local K-M estimator
Ĝn(.|.). For j = 1, . . . ,n, define

ξ(Yj ,dj , t,x) = I{Yj ≤ t,dj = 0}
h(Yj |x)

−
∫ min(Yj ,t)

0

d�(s|x)

h(s|x)
,

where h(t |x) = 1−Pr(Yj ≤ t |x) = G(t |x)(1− F0(t |x)), �(t |x) = − ln(G(t |x)) =
−∫ t

0
dG(t |x)
G(t |x) , and H̃(t |x) = Pr{Yj ≤ t,dj = 0|x} = −∫ t

0 (1− F(s|x))dG(s|x).

LEMMA 4.1. Suppose that Assumptions A4–A7 hold and κ1 = [s4]. Then with
probability one,

sup
x∈D

sup
t

|Ĝn(t |x)− G(t |x)| = O

((
logn

nh p
n

)1/2
)

(9)

Ĝn(t |x)− G(t |x) = G(t |x)
1

Ñn(x)
∑

k∈S̃n(x)

[Xkx(hn, A1)]
� ξ(Yk,dk, t,x) (10)

× [ f (x)�(A1)]
−1e1 + O

((
logn

nh p
n

)3/4
)

uniformly in x ∈D as well as in t , where

S̃n(x) = {i : 1 ≤ i ≤ n, |Xi,x| ≤ hn}, Ñn(x) = �
(

S̃n(x)
)
.

The next theorem gives the strong uniform convergence rate of ĉn(Xj ),
j = 1, . . . ,n.
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THEOREM 4.2. Suppose Assumptions A1–A7 hold with s1 > 0,s2 > 0, s3 > 0.
Let k = [s2], and the bandwidth δn is chosen such that

δn ∝ n−κ , for some
1

2s2 + p
≤ κ <

1

p
.

Then we have, with probability one,

sup
1≤ j≤n

|ĉn(Xj )− cn(Xj )| = O
({

n1−κp/ logn
}−1/2

)
. (11)

Remark. The optimal rate of convergence of Stone (1980) can be achieved by
setting κ = 1/(2s2 + p).

We take this moment to briefly describe how uniformity in Theorem 4.2 can be
extended to cover the whole compact set D. Cover D with J p

n = O(nkp) number
of cubes side length 2δn , and let Sn,r be a typical such cube with center at xn,r , 1 ≤
r ≤ J p

n . Obtain estimates of ĉn(xn,r ) through minimizing (3) with xn,r substituted
for Xj . For any x ∈ Sn,r , construct the estimates of cn(x) as

ĉn,u(x) = δ[u]
n /u!Du

[{
ĉn(xn,r )

}�
(xn,r −x)(δn, A)

]
,

where the differential operator Du is with respect to x. Under Assumption A2,
uniformity over D thus reduces to uniformity over xn,r , which can be proved in
exactly the same way as (11), by appealing to the Borel-Cantelli lemma.

For any x ∈D, define

�n(x) = Ei

[
fε|X(0|Xi )Xi,x(δn, A)X�

i,x(δn, A)|Xi ∈ Sn(x)
]
,

Tn(ζj ,ζk) = Ei

[
Xi j (δn, A)X�

ki (hn, A1)[I{Yi ≤ Qn(Xi ,Xj )}− τ ]

×ξ(Yk,dk,Yi ,Xi )/ f (Xi )|Xi ∈ Sn(Xk)
]
,

where Ei (.) stands for expectation taken with respect to the distribution of
(Xi ,Yi ).

Regarding the strong uniform Bahadur-type representation of ĉn(.), we have

THEOREM 4.3. Suppose conditions in Theorem 4.2 hold with s3 > 1/2, and
the bandwidth δn is chosen such that

δn ∝ n−κ , with
1

2(s2 + p)
≤ κ <

1

p
.

Then we have

ĉn(Xj )− cn(Xj )

= [�n(Xj )]−1

Nn(Xj )
∑

i∈Sn(Xj )

di

G(Yi |Xi )
Xi j (δn, A)

[
τ − I

{
Yi ≤ Qn(Xi ,Xj )

}]

− [�n(Xj )]−1

Nn(Xj )

n

∑
k=1

Tn(ζj ,ζk)[�(A1)]
−1e1 + Rn(Xj ), (12)
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where with probability one,

max
1≤ j≤n

|Rn(Xj )| = O
({

n1−κp/ logn
}−3/4

)
.

Remark 1. In the absence of censoring, Chaudhuri (1991b, Thm. 3.3) de-
rived a local Bahadur representation. Our results differ from his in two aspects.
First, the factor di/G(Yi |Xi ) rectifies the “bias” caused by censoring. Second, the
plugging-in of the preliminary estimator Ĝn(.|.) of the survival function G(.|.)
leads to the second term in (12), which is nonexistent in Chaudhuri (1991b).
Similar observation has been made by Honoré et al. (2002) for linear quantile
regression under censoring.

Remark 2. For any finite ι > 0, let 0 < τ1 < τ2 < · · · < τnι < 1 stand for nι

different quantile levels. If Assumptions A2 and A3 are also satisfied uniformly
in τ = τ1, . . . ,τnι , the above uniformity results can be easily extended to cover
estimators associated with these quantile levels.

Remark 3. The above Bahadur representation is valid for the “optimal” non-
parametric function estimation bandwidth δn ∝ n−1/(2s2+p). Yet, in many applica-
tions “undersmoothing,” i.e., bandwidth smaller than optimal, is often necessary
to obtain the desired asymptotic results. This is so that the bias of the estimators,
of order O(δ

s2
n ), is o

(
n−1/2

)
. This implies that we need κ > 1/(2s2) at least. Sim-

ilar observations have been made in Chaudhuri et al. (1997), where readers can
find references containing examples of undersmoothing.

5. APPLICATIONS

In this section we showcase through two examples the implications of Theorem
4.3 in establishing asymptotic properties of a class of estimators. For the remain-
der of this paper, a.s. stands for almost surely.

First note that under the conditions in Theorem 4.3, we have

max
1≤ j≤n

δ−1
n |Rn(Xj )| = o

(
n−1/2) a.s.

provided that

δn ∝ n−κ , with
1

2s2
≤ κ <

1

4+3p
; (13)

and

max
1≤ j≤n

|Rn(Xj )| = o
(
n−1/2) a.s.,

provided that

δn ∝ n−κ , with
1

2s2
≤ κ <

1

3p
. (14)

Note that (15) will be used in Section 5.1 and (14) in Section 5.2.
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5.1. The Censored Average Derivative Estimator

Let ∇Q(X) = ∂ Q(X)/∂X denote the gradient vector of Q(.). Then the average
gradient vector

β = (β1, . . . ,βp)
� = E(∇Q(X))

gives a concise summary of quantile-specific regression effects; i.e., the average
change in the quantile of the response as the ith covariate is perturbed, while
the other covariates are held fixed. This parameter has been of great interest in
econometrics following the work of Härdle and Stoker (1989). Here we study the
estimation of β in the presence of censoring using the average derivative method.

Let ∇ Q̂(X j ) be the nonparametric estimator of ∇Q(X) derived from (3); i.e.,

∇ Q̂(X j ) = (ĉn,u(Xj ))[u]=1,

and consequently we can construct an estimate of β as

β̂ = 1

n

n

∑
j=1

∇ Q̂(X j ). (15)

We refer to (15) as the censored average derivative estimator (c-ADE). To estab-
lish the asymptotic property of β̂, we assume that conditions in Theorem 4.3 hold
with s1 = s3 = s4 = 1+γ , for some γ > 0, and δn is chosen such that (13) holds
for some s2 > 3p/2+2.

According to Theorem 4.3, for any b = (b1, . . . ,bp)
� ∈ R p, we have

b�(β̂ −β
)= b�

[
1

n

n

∑
j=1

∇Q(Xj )−β

]
+o
(
n−1/2)+B� 1

nδn

n

∑
j=1

[�n(Xj )]−1

Nn(Xj )

× ∑
i∈Sn(Xj )

di

G(Yi |Xi )
Xi j (δn, A)

[
τ − I

{
Yi ≤ Qn(Xi ,Xj )

}]
(16)

+B� 1

nδn

n

∑
j,k=1

[�n(Xj )]−1

Nn(Xj )
Tn(ζj ,ζk)[�(A1)]

−1e1 a.s., (17)

where B is an n(A)×1 vector, defined as B = (0,b�,0)�. First, note that follow-
ing similar lines as in Chaudhuri et al. (1997, pp. 736–739), we can show that the
term (16) is asymptotically equivalent to

B� 1

n

n

∑
j=1

dj

G(Yj |Xj )
[τ − I{εj ≤ 0}] ∇ f (Xj )

fε,x(0,Xj )
+op

(
n−1/2).

We now move on to study term (17). Define

T̃n(ζj ,ζk) = Ei

[
Xi j (δn, A)X�

ki (hn, A1)[I{Yi ≤ Q(Xi )}− τ ]

×ξ(Yk,dk,Yi ,Xi )/ f (Xi )|Xi ∈ Sn(Xk)
]
.
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Then it is easy to see that the error resulting from replacing Tn(ζj ,ζk) in (17) with
T̃n(ζj ,ζk) is of order op

(
n−1/2

)
. Now let

ηn(Zj ,Zk) = B�[Nn(Xj )�n(Xj )]
−1T̃n(ζj ,ζk)[�(A1)]

−1e1,

ξn(Zj ,Zk) = ηn(Zj ,Zk)+ηn(Zk,Zj ), Un = ∑
1≤ j<k≤n

ξn(Zj ,Zk).

Then we have

B� 1

nδn

[
n

∑
j,k=1

[�n(Xj )]−1

Nn(Xj )
T̃n(ζj ,ζk)

]
[�(A1)]

−1e1 = 1

nδn
Un +o

(
n−1/2) a.s.,

as long as κ < 1/(2p −2), where we have implicitly used (A.1) in the Appendix
and the fact that the smallest eigenvalue of �n(Xj ) is bounded away from zero
uniformly in j and k.

To analyze Un , first note that E[ξn(Zj ,Zk)] = E[ηn(Zk,Zj )] = 0. Consider the
Hoeffding decomposition of Un (see, e.g., Serfling, 1980), and define the projec-
tion of Un as

Pn = (n −1)
n

∑
k=1

gn(Zk),

with gn(Zk) = Ej [ξn(Zj ,Zk)] = Ej [ηn(Zj ,Zk)]. We thus have, through argu-
ments similar to that in Chaudhuri et al. (1997), that

E(Un − Pn)2 = n(n −1)

2

{
E
[
ξ2

n (Zk,Zj )
]−2E

[
g2

n(Zk)
]}

≤ n(n −1)

2
E
[
ξ2

n

(
Zk,Zj

)]= O
(
δ−p

n

)= o
(
nδ2

n

)
, (18)

as long as κ < 1/(p +2). We move on to study gn(.). To this aim, we need to use
facts (A.5) and (A.1) given in the Appendix, to get that with probability one,

δ p
n

[�n(Xj )]−1

Nn(Xj )

= 1

n

[�(A)]−1

fε,X(0,Xj )
+ δn

n

[�(A)]−1 ∑p
l=1�

∗
l f (l)

ε,X(0,Xj)[�(A)]−1

f 2
ε,X(0,Xj )

+ O
(
δs3

n + δ2
n

)
,

uniformly in j = 1, . . . ,n. Therefore,

1

nδn
Pn = 1

δn

n

∑
k=1

gn(Zk)+o
(
n−1/2)

= B� [�(A)]−1

nδ
p+1
n

n

∑
k=1
Ej

[
f −1
ε,X(0,Xj )T̃n(ζj ,ζk)

]

+ 1

nδ
p
n

[�(A)]−1
n

∑
k=1
Ej

[
∑p

l=1 �∗
l f (l)

ε,X(0,Xj )

f 2
ε,X(0,Xj )

T̃n(ζj ,ζk) f (Xj )

]

+op
(
n−1/2). (19)
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The handling of the two leading terms in (19) are very similar. We only deal with
the first term to illustrate. Let

M(Xi ,Xj ,Zk)

= E{[I{Yi ≤ Q(Xi )}− τ ]ξ(Yk,dk,Yi ,Xi )|Xi ,Xj ,Zk} f (Xj )

fε|X(0|Xj )
. (20)

First note that in view of Assumptions A1–A4, it is easy to see that M(Xi ,Xj ,Zk)
∈ H1+γ (D). Moreover, M(Xi ,Xj ,Zk) itself and its first-order partial derivatives
with respect to Xi and Xj all have mean zero. Therefore, the first term in (19) can
be expressed as

B�[δ p+1
n �(A)

]−1
Ei j

[
Xi j (δn, A)X�

ki (hn, A1)M(Xi ,Xj ,Zk)
∣∣∣|Xki | ≤ hn

]
[�(A1)]−1e1

= Ei

[
B�[δn�(A)]−1

{∫
t∈[−1,1]d

M(Xi ,Xi + δnt,Zk)t(A)dt
}

× [Xki (hn, A1)]�
∣∣∣Xki | ≤ hn

]
[�(A1)]−1e1

= Ei

[{
b�M1(Xi ,Zk)+ δ

γ
n Wn1(Xi ,Zk)

}
[Xki (hn, A1)]�

∣∣∣Xki | ≤ hn

]
[�(A1)]−1e1

= b�M1(Zk)+hn Wn2(Zk)+ δ
γ
n Wn3(Zk), (21)

where Wn1(.), Wn2(.), and Wn2(.) stand for various zero-mean uniformly bounded
random terms, and

M1(Xi ,Zk) = ∂ M(Xi ,Xj ,Zk)

∂Xj
|Xj =Xi , M1(Zk)

de f= M1(Xk,Zk). (22)

Note that for the second equality in (21), we have implicitly used the facts

B�[�(A)]−1
∫

t(A)[t(A)]�dt = B�,

B�[�(A)]−1
∫

t(A)dt = 0, e�
1 [�(A1)]

−1
∫

t(A1)dt = 1.

In a similar manner, the second term in (19) can be shown to be of order
op
(
n−1/2

)
. Gathering results (17), (18), (19), and (21), we have

β̂ −β = 1

n

n

∑
k=1

∇Q(Xk)−β + 1

n

n

∑
k=1

[
dk{τ − I (εk ≤ 0)}

G(Yk |Xk)

∇ f (Xk)

fε,x(0,Xk)
+ M1(Zk)

]

+op

(
1

n1/2

)
. (23)

This would be exactly the same as the one obtained in Chaudhuri et al. (1997,
Thm. 2.1) if not for the factor dk/G(Yk |Xk) and the presence of M1(Zk). The
former reflects the presence of censoring, while the latter reflects the impact
of plugging in the K-M estimator. If Ci = ∞, then dk/G(Yk |Xk) ≡ 1 and
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M1(Zk) ≡ 0, for all k = 1, . . . ,n. In other words, the results we derived here do
coincide with those in Chaudhuri et al. (1997) in the absence of censoring.

Asymptotic normality of β̂ is straightforward from (23), since the three terms

∇Q(Xk)−β,
dk{τ − I (εk ≤ 0)}

G(Yk |Xk)
∇ f (Xk )

fε,x(0,Xk )
, and M1(Zk) are all zero-meaned with

finite variances. While it is relatively easy to work out the variances of the first
two,

Var(∇Q(Xk)), E

[
Var{I (εk ≤ 0)|Xk}

G(Yk |Xk)

∇ f (Xk){∇ f (Xk)}�
{ fε,x(0,Xk)}2

]
,

the variance of M1(Zk) and its covariances with the other two terms take too
complicated a form to be included here.

5.2. The Additive Quantile Regression Model

Suppose the regression quantile function Q(.) in model (2) admits an “additive”
form; i.e.,

Q(x) = Q(x1, . . . , xp) = c + Q1(x1)+·· ·+ Qp(xp), (24)

where c is an unknown constant, and Qk(.), k = 1, . . . , p, are unknown functions
that have been normalized such that E[Qk(Xk)] = 0, k = 1, . . . , p. For previous
work on additive regression model, see Linton (2001), Yu and Lu (2004), and
Horowitz and Lee (2005). To estimate the component functions in (24), Q1(.) say,
we consider the marginal integration method, which involves first estimating Q(.)
and then integrating it over certain directions. Partition x as x = (x1,x2), where
x1 is the one-dimensional direction of interest and x2 is the p − 1 dimensional
nuisance direction. Accordingly, partition Xj = (X j1,Xj2). Define the functional

φ1(x1) =
∫

Q(x1,x2) f2(x2)dx2, (25)

where f2(x2) is the joint probability density of Xi2. Under the additive structure
(24), φ1(.) = c+ Q1(.). Therefore, estimation of Q1(.) transfers into that of φ1(.).
Based on (25), an estimate φn1(x1) of φ1(x1) can be obtained by replacing f2(.)
in (25) with the empirical distribution function of Xj2, and Q(.) with its local
polynomial estimate ĉn1(x1,Xj2), the first element of ĉn(x1,Xj2); i.e.,

φn1(x1) = n−1
n

∑
j=1

ĉn1(x1,Xj2).

In the context of mean regression, Linton and Härdle (1996) and Hengartner and
Sperlich (2005) suggested that for φn1(.) to be asymptotically normal, the band-
width used for the direction of interest x1 should be different from those for the
p − 1 nuisance directions. However, for ease of expression, we assume that the
same bandwidth is used for all directions.
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Let X∗
j = (x1,Xj2) and X∗

i j = Xi −X∗
j . It follows from Theorem 4.3 that

ĉn1
(
X∗

j

)− cn1
(
X∗

j

)
= e�

1

[
�n
(
X∗

j

)]−1

Nn
(
X∗

j

) ∑
i∈Sn

(
X∗

j

) di

G(Yi |Xi )
X∗

i j (δn, A)
[
τ − I

{
Yi ≤ Qn

(
Xi ,X∗

j

)}]

−e�
1

1

n

n

∑
k=1

[
�n
(
X∗

j

)]−1

Nn
(
X∗

j

) Tn
(
ζ ∗

j ,ζk
)

e�
1 �−1(A1)+ Rn

(
X∗

j

)
,

where Tn(ζ ∗
j ,ζk) is defined similarly to Tn(ζ ∗

j ,ζk), with X∗
j replacing Xj and X∗

i j
replacing Xi j , which together with the additive structure (24) assumed for Q(.)
leads to

φn1(x1) = φ1(x1)+ 1

n

n

∑
j=1

Q2(Xj2)+o
(
n−1/2)

+e�
1

1

n

n

∑
j=1

[
�n
(
X∗

j

)]−1

Nn
(
X∗

j

) ∑
i∈Sn

(
X∗

j

) di

G(Yi |Xi )
X∗

i j (δn, A)
[
τ − I

{
Yi ≤ Qn

(
Xi ,X∗

j

)}]

(26)

−e�
1

1

n2 ∑
j,k

[
�n
(
X∗

j

)]−1

Nn
(
X∗

j

) Tn
(
ζ ∗

j ,ζk
)

e�
1 [�(A1)]

−1, (27)

where Q2(x2, . . . , xp) = Q2(x2)+·· ·+ Qp(xp). Note that φn1(x1) is, by defini-
tion, the average of n subvectors of ĉn(.), with the average taken along the p − 1
nuisance directions, while for ADE (15), the average is taken along all p direc-
tions. Therefore, as in the case of ADE, we can conclude that the term (27), like
(17), is negligible compared to others, and the dealing of term (26) is similar to
that of (17). Specifically, we have

1

n

n

∑
j=1

[
�n
(
X∗

j

)]−1

Nn
(
X∗

j

) ∑
i∈Sn

(
X∗

j

) di

G(Yi |Xi )
X∗

i j (δn, A)
[
τ − I

{
Yi ≤ Qn

(
Xi ,X∗

j

)}]

= [�(A)]−1

nδn

n

∑
i=1

di I{|Xi1 − x | ≤ δn}
G(Yi |Xi )

[τ − I{εi ≤ 0}]
[

f2(Xi2)

fε,X(0, x1,Xj2)

]

×
∫

[0,1]p−1

[
δ−1

n (Xi1 − x),ν
]
(A)dν +op

(
δ−1

n n−1/2),
where X j1 stands for the first element of Xj . Therefore,

φn1(x1) = φ1(x1)+ e�
1

[�(A)]−1

nδn

n

∑
i=1

di I{|Xi1 − x | ≤ δn}
G(Yi |Xi )

[τ − I{εi ≤ 0}]

×
[

f2(Xi2)

fε,X(0, x1,Xi2)

]∫
[0,1]p−1

[
δ−1

n (Xi1 − x),ν
]
(A)dν +op

(
δ−1

n n−1/2).
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Write b(A) = ∫
[0,1]⊗ p t(A)dt. Asymptotic normality for (nδn)1/2(φn1(.) −

φ1(x1)) can thus be established, with mean zero and covariance equal to
e�

1 [�(A)]−1b(A)b(A)�[�(A)]−1e1 multiplied by

∫ [τ − I{εi ≤ 0}]2 f 2
2 (X2)

G{Q(x1,X2)+ εi |X = (x1,X2)} fε,X(0, x1,X2)
dεi dX2.

To conduct pointwise inference, one only needs to estimate the unknown quanti-
ties in the asymptotic variance, which is rather straightforward. For uniform con-
fidence bands, one can proceed as in Johnston (1982).

6. NUMERICAL STUDIES

In this section we carry out a small-scale simulation study to investigate the
finite-sample performance of the c-ADE estimator (15). For comparison, we also
include in the study the naive average derivative estimator (n-ADE), i.e., the ADE
using only uncensored data as if they were not subject to any censoring.

Let x1,x2,x3,ε, and ε be i.i.d. N (0,1) random variables. The response variable
T and censoring variable C are such that

T = exp(β1x1 +β2x2 +β2x3)+ ε, C = exp(x2 + c0 + ε), (28)

with β1 = −1,β2 = 0,β3 = 1, and some constant c0, which dictate the probability
that C < T , i.e., the censoring rate. Specifically, c0 = −1,−0.5,0,1,1.5,2,3, and
∞ correspond to censoring rates of about 64%, 57%, 50%, 33%, 24%, 17%, 7%,
and 0%, respectively.

Model (28) is a single-index model at all quantile levels, with θ0 =
(β1,β2,β3)

�/(β2
1 +β2

2 +β2
3 )1/2 = (−1,0,1)�/

√
2. For any standardized estima-

tor θ̂ of θ0, define the estimation error as

err =
(

1−|θ�
0 θ̂ |
)1/2

.

The averaged estimation errors based on 200 replications are shown in Figure 1.
It is immediately evident that the higher the censoring rate, the bigger the im-
provement c-ADE is over n-ADE. Also, as sample size increases, the superiority
of c-ADE over n-ADE becomes more pronounced.

7. DISCUSSION

Kong et al. (2010) derived the Bahadur representation for the local polynomial
estimator of a nonparametric M-(quantile) regression function for complete data.
This paper considers the same problem, but for censored data, thus building a
bridge joining Bahadur representation for nonparametric quantile regression and
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FIGURE 1. The average estimation errors for different combinations of sample size n,
quantile level, and censoring rate. The dashed line represents the averaged estimation error
of n-ADE; the solid line represents the averaged estimation error of c-ADE.

(random) censoring. Two examples have been provided to demonstrate the use-
fulness of the results in establishing the asymptotic properties of estimators com-
monly used in statistical inference. One of the examples showcases that the result
obtained in Chaudhuri et al. (1997) is in fact a special case of ours.

NOTE

1. Under fixed censoring, quantile regression of a certain order may be consistent, but this is not
the case under random censoring.
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APPENDIX

PROPOSITION A.1. If δn ≈ n−κ , with 0 < κ < 1/p, there exists another pair of
positive constants K1 < K2, such that Pr(liminf Fn) = 1, where

Fn =
{

K1n1−κp ≤ Nn(Xj ) ≤ K2n1−κp, for all j = 1, . . . ,n
}

.

which can be strengthened as

sup
x∈R p

∣∣∣∣ Nn(x)

n
− δ

p
n f (x)

∣∣∣∣= o(1) a.s. (A.1)

Similarly, we have under Assumptions A2 and A3,

sup
x∈D

∣∣∣∣∣�n(x)− fε|X(0|x)�(A)− δn

f (x)

p

∑
l=1

�∗
l f (l)

ε,X(0,x)

∣∣∣∣∣= O
(
δ

s3
n
)
, a.s., (A.2)

where fε,X denotes the joint probability density function of (ε,x), f (i)
ε,X, i = 1, . . . , p, its

first-order partial derivatives, and for each 1 ≤ l ≤ p, �∗
l is the corresponding n(A)×n(A)

matrix with a typical entry

σu,v,ek =
∫

[−1,1]⊗ p
tu+v+ek dt,

with ek being the kth column of the p × p identity matrix; and under Assumptions A1
and A6,

sup
x∈D

|�̃n(x)− f (x)�(A1)| = O

((
nh p

n / logn
)−1/2 +hn

)
a.s. (A.3)

The proof follows directly from application of the Glivenko–Cantelli theorem. Using the
von Neumann expansion for the inverse matrix, we further have

[�n(x)]−1 = f −1
ε|X(0|x)[�(A)]−1 + δn

[�(A)]−1
p
∑

l=1
�∗

l f (l)
ε,X(0,x)[�(A)]−1

f 2
ε|X(0|x) f (x)

+O
(
δ

s3
n + δ2

n

)
, (A.4)

[�n(x)]−1 f (x) = f (x)

fε|X(0|x)
[�(A)]−1 + δn

[�(A)]−1
p
∑

l=1
�∗

l f (l)
ε,X(0,x)[�(A)]−1

f 2
ε|X(0|x)

+ O
(
δ

s3
n + δ2

n

)
. (A.5)

Proof of Lemma 4.1. This follows directly from (A.3), Theorem 2.1, and Theorem
2.3 of Gonzalez-Manteiga and Cadarso-Suarez (1994). Note that the fact that the weight
B̃n j (.) might be negative does not affect the validity of the proof. n
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We now list a few facts used in the proof. For any x ∈D, let ωδn (.|x) denote the condi-
tional density of the vector δ−1

n (X−x), given that |X−x| ≤ δn .

Fact F1. Then under Assumption A1, ωδn (t|x) converges uniformly both in t and x,
to the uniform density on [−1,1]p .

The proof of Fact F1 is straightforward; also see Chaudhuri (1991a). We now move on
to derive the matrix form of ĉn(x), x = Xj , 1 ≤ j ≤ n, as in Chaudhuri (1991a,1991b).

Let T = {i : 1 ≤ i ≤ n,di = 1}, DXn(x) be the matrix with rows given by the vectors
{Xi,x(δn, A), i ∈ Sn(x)∩ T}, and V Yn(x) be the corresponding column vector with com-
ponents {Yi , i ∈ Sn(x)∩ T}. For any subset h ⊂ Sn(x)∩ T, such that �(h) = n(A), denote
by DXn(x,h), the corresponding n(A)×n(A) matrix with rows {Xi,x(δn, A), i ∈ h}, and
by V Yn(x,h), the n(A)-dimensional column vector {Yi , i ∈ h}. Define

Hn(x) = {h : h ⊂ Sn(x)∩T, �(h) = n(A), DXn(x,h) has full rank}
The following two facts will play a crucial role in the proofs of the theorems.

Fact F2. If DXn(x) has rank n(A), then there is a subset h ∈ Hn(x), such that (7) has
at least one minima of the form

ĉn(x) = [DXn(x,h)]−1V Yn(x,h).

Fact F3. For the h specified in Fact F2, Ln(x,h) ∈ [τ −1,τ ]n(A), which stands for the
n(A)-dimensional interval in Rn(A), where

Ln(x,h) = ∑
i∈h̄

di

[1

2
− 1

2
sign

{
Yi −{Xi,x(δn, A)}�ĉn(x)

}
− τ
]

×
{

Ĝn(Yi |Xi )
}−1

Xi,x(δn, A)
[
Wn(h)DXn(x,h)

]−1
,

where h̄ = Sn(x)\h denotes its complement in Sn(x), sign(a) is +1,0, or −1 depend-
ing on whether x is positive, zero, or negative, and Wn(h) is the diagonal matrix with
elements {Ĝn(Yi |Xi ), i ∈ h}. Moreover, ĉn(x) is the unique minima of (7) iff Ln(x,h) ∈
(τ −1,τ )n(A).

Remark. Noticing the linearity of the loss function ρτ (.), Facts F2 and F3 can be proved
in exactly the same manner as Theorems 3.1 and 3.3 in Koenker and Bassett (1978); see
Chaudhuri (1991b) for parallel results. Note that the form of ĉn(x) specified in Fact F2 is
free from the K-M estimator Ĝn(.), and appears to be identical to the minimizer of

min
c ∑

i∈Sn(x)

ρτ {Yi − Pn(c,x,Xi )},

which is another version of (7) with equal weights. They are, however, distinct, since the
subsets h they are related to are usually different. This can be seen from the Fact F3, the
necessary and sufficient condition h has to satisfy, which does involves Ĝn(.), and thus is
different from Fact 6.4 in Chaudhuri (1991b). For illustration purposes, consider a simple
example, where we have only two observations {Y1,Y2}, with Y1 < Y2; then the solution
set to the minimization problem miny{|Y1 − y|+ |y − Y2|} with equal weights is [Y1,Y2].
However, the weighted minimization problem miny{a1|Y1 − y| + a2|y − Y2|} for some
positive a1 
= a2, has a unique solution, Y1, if a1 > a2, and Y2, if a1 < a2. Therefore, the
two solutions sets may overlap, but they usually do not coincide.
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Under Assumption A2, we have for any x ∈D, k = [s2], all sufficiently large n, and any
bounded t ∈ [−1,1]⊗ p , Q(x + tδn) can be approximated by the kth order Taylor polyno-
mial

Qn(x+ tδn,x) = ∑
u∈A

cn,u(x)tu = t�cn(x),

and the remainder r(tδn,x) = Q(x+ tδn)− Qn(x+ tδn,x) satisfies

|r(tδn,x)| ≤ C(|t|δn)s2

uniformly over t ∈ [−1,1]⊗ p and x ∈D. Define

Q̂n(x+ tδn,x) = t�ĉn(x).

Proof of Theorem 4.2. For any positive constant K1 and a generic x ∈ R p , which stands
for any one of Xj , j = 1, . . . ,n, let Un be the event defined as

Un(x) =
{
|ĉn(x)− cn(x)| ≥ K1[nδ

p
n / logn]−1/2

}
.

According to the Borel-Cantelli lemma, the assertion in Theorem 4.2 will follow, if there
exists some K1 > 0, such that

∑
n

n P(Un(x)) < ∞.

To obtain a uniform upper bound for P(Un(x)), for any given vector �n ∈ Rn(A), set

Zni (x) =
[

1

2
− 1

2
sign

{
εi −��

n Xi,x(δn, A)+ rn(Xi,x,x)
}

− τ

]
Xi,x(δn, A), (A.6)

where rn(Xi,x,x) is the remainder defined above. Using results (9) on the strong uniform
consistency of K-M estimator, i.e.,

sup
x

sup
t≤τ(x)

|Ĝn(t |x)− G(t |x)| = O

((
logn

nh p
n

)1/2
)

,

we have Wn(h) = W (h) + o(1) a.s., where W (h) is the diagonal matrix with elements
{G(Yi |Xi ), i ∈ h}. Consequently, the assertion in Fact F3 that Ln(x,h) ∈ (τ − 1,τ )d+1

implies that there exists some constant φ1 > 0, which depends on n(A), such that
|Ln1(x,h)+ Ln2(x,h)| ≤ φ1, where

Ln1(x,h) = ∑
i∈h̄

{G(Yi |Xi )}−1 Zni (x)di ,

Ln2(x,h) = ∑
i∈h̄

G(Yi |Xi )− Ĝn(Yi |Xi )

G(Yi |Xi )Ĝn(Yi |Xi )
Zni (x)di ,

where Zni (x) is defined as in (A.6) with �n = ĉn(x)− cn(x). First note that as a result of
(9), (A.1), and assumptions that δn = o(hn), we have sup

x∈D
Ln2(x,h) = o{(nδ

p
n logn)1/2}

a.s. Therefore, from |Ln1(x,h)+ Ln2(x,h)| ≤ φ1, we have

Ln1(x,h) = o
{
(nδ

p
n logn)1/2

}
a.s. (A.7)
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Next, as E[di |Xi ,Yi ] = G(Yi |Xi ), Proposition 6.1 in Chaudhuri (1991b) states that there
exist positive constants ε∗

1 ,ε∗
2 ,c∗

5, and M∗
2 , such that∣∣∣E[Zni (x)di /G(Yi |Xi )

]∣∣∣≥ min
{
ε∗

1 ,c∗
5 |ĉn(x)− cn(x)|},

whenever |rn(Xi,x,x)| ≤ ε∗
2 and |ĉn(x) − cn(x)| ≥ M∗

3 |rn(Xi,x,x)|, where M∗
3 ≥ M∗

2 .

Therefore, if event Un is true, i.e., |ĉn(x)− cn(x)| ≥ K1[nδ
p
n / logn]−1/2, for some posi-

tive K1, we have from rn(Xi,x,x) = O(|δn |s2) = o([nδ
p
n / logn]−1/2), for κ ≥ 1/(2s3 +d),

that there exists some constant c5 > 0, such that∣∣∣E[Zni (x)di /G(Yi |Xi )
]∣∣∣≥ c5

[
nδ

p
n / logn

]−1/2
. (A.8)

Now (A.7) and (A.8) jointly imply that there exists some K ∗
1 > 0, such that Un(x) is

contained in the event{
for some h ∈ Hn(x),

∣∣∣∣∣∑
i∈h̄

{Zni (x)di /G(Yi |Xi )−E[Zni (x)di /G(Yi |Xi )]}
∣∣∣∣∣≥ K ∗

1 [nδ p
n logn]1/2,

with �n = ĉn(x)− cn(x), ĉn(x) = [DXn(x,h)]−1V Yn(x,h),and |�n | ≥ K1[nδ p
n / logn]−1/2

}
.

Applying Bernstein’s inequality to ∑
i∈h̄

Zni (x)di /G(Yi |Xi ), we have by noting that

�(Hn(x)) = O{(nδ
p
n )n(A)}, and that Zni (x)di /G(Yi |Xi ) is bounded, there exist constants

c6 > 0,c7 > 0, and an integer N1 > 0, such that

P(Un(x)) ≤ c6(nδ
p
n )n(A) exp(−c7 logn) (A.9)

uniformly in x = X1, . . . ,Xn . By letting K1, thus K ∗
1 sufficiently large, we indeed have

∑n n P(Un(x)) < ∞. n

Proof of Theorem 4.3. Again, here the generic x ∈ R p should be interpreted as any of
the Xj , j = 1, . . . ,n. The proof consists of the following steps.

Step 1. Define

H̃n(x,δn,cn(x)) =
∫

[−1,1]p

Fε

(
{cn(x)}�t(A)− Q(x+ tδn)

)
t(A)ωδn (t,x)dt

=
∫

[−1,1]p

Fε{Qn(x+ tδn,x)− Q(x+ tδn)}t(A)ωδn (t,x)dt

=
∫

[−1,1]p

Fε{r(tδn,x)}t(A)ωδn (t,x)dt,

H̃n(x,δn, ĉn(x)) =
∫

[−1,1]p

Fε

(
{ĉn(x)}�t(A)− Q(x+ tδn)

)
t(A)ωδn (t,x)dt

=
∫

[−1,1]p

Fε{Q̂n(x+ tδn,x)− Q(x+ tδn)}t(A)ωδn (t,x)dt,

and

R(1)
n (x) = H̃n(x,δn, ĉn(x))− H̃n(x,δn,cn(x))−�n(x)[ĉn(x)− cn(x)]. (A.10)
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Then, as shown in Step 1 of Chaudhuri (1991b, p. 773), by Theorem, 4.2 and
Assumptions A1 and A2, we have

sup
j

|R(1)
n (Xj )| = O

{
[n(1−κp)/ logn]−(1+s3)/2

}
(A.11)

almost surely, which is of order O{[n(1−κp)/ logn]−3/4}, if s3 ≥ 1/2.

Step 2. Define the n(A)−dimensional random vector χn(x) as

χn(x) = ∑
i∈Sn(x)

[
di

G(Yi |Xi )
Xi,x(δn, A)I{Yi ≤ Q̂n(Xi ,x)}− H̃n(x,δn, ĉn(x))

]

− ∑
i∈Sn(x)

[
di

G(Yi |Xi )
Xi,x(δn, A)I{Yi ≤ Qn(Xi ,x)}− H̃n(x,δn,cn(x))

]
,

and for some constant K3 > 0, the corresponding event

Wn(x) =
{
|χn(x)| ≥ K3[logn]3/4n(1−κp)/4

}
.

Also, for h ∈ Hn(x) and large enough n, define

ĉh
n(x) = [DXn(x,h)]−1 V Yn(x,h), Q̂h

n(Xi ,x) =
{

ĉh
n(x)

}�
Xi,x(δn, A),

χh
n (x) = ∑

i∈h̄

[
di

G(Yi |Xi )
Xi,x(δn, A)I{Yi ≤ Q̂h

n(Xi ,x)}− H̃n(x,δn, ĉh
n(x))

]

− ∑
i∈h̄

[
di

G(Yi |Xi )
Xi,x(δn, A)I{Yi ≤ Qn(Xi ,x)}− H̃n(x,δn,cn(x))

]
.

Then, in view of the definition of the events An (i.e., unique solution), Un(x),
and Fact F2, the event Wn(x)∩ An ∩Un(x) is contained in the event{
for some h ∈ Hn(x), |χh

n (x)| ≥ K4[logn]3/4n(1−κp)/4

and |ĉh
n(x)− cn(x)| ≤ K1[n(1−κp)/ logn]−1/2

}
∩ An

for large enough n, where K4 = K3/2, and we have implicitly used the fact
that [logn]3/4n(1−κp)/4 → ∞ and that �(h) = p. As argued in Chaudhuri
(1991b), given the set Sn(x), h ∈ Hn , and the set of {(Xi ,Yi ) : i ∈ h}, the
terms in the sum defining χh

n (x) are i.i.d. with mean 0, and variance-covariance
matrix with Euclidean norm of the same order as |ĉh

n(x) − cn(x)|, which is
O([n(1−κp)/ logn]−1/2). This result follows from the fact that the presence
of the indicator function I (.) in the definition of χh

n (x) causes the terms in the
sums to act in a similar way as a random vector with binomial components. As
G(.) is abounded away from zero, an application of the Bernstein’s inequality to
the sum defining χh

n (x) yields a result similar to (A.9); i.e., there exist constants
c8 > 0,c9 > 0 such that

P(Wn(x)∩ An ∩Un(x)) ≤ c8n(1−κp)n(A) exp(−c9 logn) = o
(
n−2),

by choosing K3, hence c9 sufficiently large. Therefore, we have

sup
j

|χh
n (Xj )| = O

(
[logn],3/4 n(1−κp)/4

)
. (A.12)
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Step 3. Combining (A.10), (A.11) and (A.12), we have

1

Nn(Xj )
∑

i∈Sn(Xj )

di

G(Yi |Xi )
Xi j (δn, A)[I{Yi ≤ Qn(Xi ,Xj )}− τ ]

= 1

Nn(Xj )
χh

n (Xj )+ H̃n(Xj ,δn, ĉn(Xj ))− H̃n
(
Xj ,δn,cn(Xj )

)
− 1

Nn(Xj )
∑

i∈Sn(Xj )

di

G(Yi |Xi )
Xi j (δn, A)

[
I
{

Yi ≤ Q̂n(Xi ,Xj )
}− τ

]

= �n(Xj )[ĉn(Xj )− cn(Xj )]+ O

{[
n(1−κp)/ logn

]−3/4
}

− 1

Nn(Xj )
∑

i∈Sn(Xj )

di

Ĝn(Yi |Xi )
Xi j (δn, A)

[
I{Yi ≤ Q̂n(Xi ,Xj )}− τ

]

− 1

Nn(Xj )
∑

i∈Sn(Xj )

di

[ 1

G(Yi |Xi )
− 1

Ĝn(Yi |Xi )

]

×Xi j (δn, A)
[

I
{

Yi ≤ Q̂n(Xi ,Xj )
}

− τ
]

(A.13)

uniformly for x = Xj , j = 1, . . . ,n. Note that according to Fact F3, the

second term on the right-hand side of (A.13) is of order O(nκp−1) =
o{[n(1−κp)/ logn]−3/4}. It remains to show that the last terms equal

[�n(Xj )]
−1

Nn(Xj )

n

∑
k=1

Tn(ζj ,ζk)�−1(A1)e1 + Rn(Xj )+ O

{[
n(1−κp)/ logn

]−3/4
}
.

This is accomplished by the arguments immediately below and Lemma A.2. n

Define

Fx(ζi ,ζk) = di I{Xi ∈ Sn(x)}Xi,x(δn, A)

f (Xi )G(Yi |Xi )
[I{Yi ≤ Qn(Xi ,x)}− τ ]

× [Xki (hn, A1)]�ξ(Yk ,dk ,Yi ,Xi )I{Xk ∈ Sn(Xi )}.
Now Ei [Fx(ζi ,ζk)] stands for expectation taken with respect to the joint distribution of
(Xi ,Yi ) with the other argument held fixed. Then based on (A.3), Theorem 4.3 would
follow if we can show that

LEMMA A.2. With probability one,

1

Nn(Xj )
∑

i∈Sn(Xj )

di
{

Ĝn(Yi |Xi )− G(Yi |Xi )
}

G(Yi |Xi )Ĝn(Yi |Xi )
Xi j (δn, A)

[
I
{

Yi ≤ Q̂n(Xi ,Xj )
}− τ

]

= 1

Nn(Xj )

n

∑
k=1

EiFXj (ζi ,ζk)+ O
{[

n1−κp/ logn
]−3/4

}

uniformly in j = 1, . . . ,n.

Proof. Let γn = logn/(nδ
p
n ). The proof consists of the following steps.

Step 1. According to (9), Assumption A7, and the facts that G(.) is bounded below from
zero and |Xi j (δn, A)| ≤ 1 for all i ∈ Sn(Xj ), it is obvious that
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1

Nn(Xj )
∑

i∈Sn(Xj )

di{Ĝn(Yi |Xi )− G(Yi |Xi )}
G(Yi |Xi )Ĝn(Yi |Xi )

Xi j (δn, A)
[
I{Yi ≤ Q̂n(Xi ,Xj )}− τ

]

= 1

Nn(Xj )
∑

i∈Sn(Xj )

di Xi j (δn, A)}
G2(Yi |Xi )

[
I
{

Yi ≤ Q̂n(Xi ,Xj )
}− τ

]

×{Ĝn(Yi |Xi )− G(Yi |Xi )
}+ O

(
γ 3/4

n

)
, (A.14)

Step 2. Replacing I{Yi ≤ Q̂n(Xi ,Xj } above with I{Yi ≤ Qn(Xi ,Xj )}, we have

1

Nn(Xj )
∑

i∈Sn(Xj )

di Xi j (δn, A)}
G2(Yi |Xi )

[
I
{

Yi ≤ Q̂n(Xi ,Xj )
}− τ

]{
Ĝn(Yi |Xi )− G(Yi |Xi )

}

= 1

Nn(Xj )
∑

i∈Sn(Xj )

di Xi j (δn, A)}
G2(Yi |Xi )

[I{Yi ≤ Qn(Xi ,Xj )}− τ ]

×{Ĝn(Yi |Xi )− G(Yi |Xi )
}+ O

(
γ 3/4

n

)
uniformly in j = 1, . . . ,n, the proof of which is left in Lemma A.3.

Step 3. Using the result in Lemma 4.1, under Assumption A7, with probability one,

Ĝn(t |x)− G(t |x) = G(t |x)

nh p
n f (x)

∑
k

I{Xk ∈ Sn(x)}ξ(Yk ,dk , t,x)[Xk,x(hn, A1)]�

× [�(A1)]−1e1 + O
(
γ

3/4
n

)
uniformly in t and x, we have

1

Nn(Xj )
∑

i∈Sn(Xj )

di Xi j (δn, A)

G2(Yi |Xi )
[I{Yi ≤ Qn(Xi ,Xj )}− τ ]

{
Ĝn(Yi |Xi )− G(Yi |Xi )

}

= 1

nh p
n Nn(Xj )

n

∑
i,k=1
FXj (ζi ,ζk)[�(A1)]

−1e1 + O
(
γ 3/4

n

)
(A.15)

uniformly in Xj , j = 1, . . . ,n.

Step 4. We will show that with probability one,

1

nh p
n Nn(x)

n

∑
i,k=1

Fx(ζi ,ζk) = 1

h p
n Nn(x)

n

∑
k=1

Ei [Fx(ζi ,ζk)]+o
([

logn/Nn(x)
]α)

uniformly in x ∈D, for any α < 1.
First, from the definition of Fx(ζi ,ζk) and noting that the “own observation”
terms are asymptotically negligible, we know the leading term on the right-hand
side of (A.16) can be written as a U-statistic plus an asymptotically negligible
term,

1

n(n −1)
∑
i 
=k
Fx(ζi ,ζk) = 1

2n(n −1)
∑
i 
=k
Hx(ζi ,ζk), (A.16)

whereHx(., .) is a symmetric function defined as

Hx(ζi ,ζk) = Fx(ζi ,ζk)+Fx(ζk ,ζi ).

Consider the Hoeffding decomposition ofHx(., .) defined as

H0
x(ζi ,ζk) =Hx(ζi ,ζk)−EiHx(ζi ,ζk)−EkHx(ζi ,ζk)+EHx(ζi ,ζk),
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where EiHx(ζi ,ζk) stands for taking expectation w.r.t ζi with ζk held fixed.
Since

EkHx(ζi ,ζk) = Ek [Fx(ζi ,ζk)+Fx(ζk , ζi )] = Ek [Fx(ζk ,ζi )],

EiHx(ζi ,ζk) = Ei [Fx(ζi ,ζk)], EHx(ζi ,ζk) = 0.

We thus have

∑
i 
=k
Hx(ζi ,ζk) = ∑

i 
=k
H0

x(ζi ,ζk)+ ∑
i 
=k

EiHx(ζi ,ζk)+ ∑
i 
=k

EkHx(ζi ,ζk)

− ∑
i 
=k

EHx(ζi ,ζk)

= 2(n −1)
n

∑
k=1

Ei [Fx(ζi ,ζk)]+ ∑
i 
=k
H0

x(ζi ,ζk). (A.17)

For the third term, to apply Proposition 4 in Arcones (1995), we need to verify
that the class of functions {H0

x(., .) : x ∈D} is Euclidean with constant envelope,
referred to as the uniformly bounded VC subgraph class in Arcones. We argue
as follows. First, the class of functions {Fx(., .) : x ∈D} is uniformly bounded.
Second, as �−1(A1)B̃hn (Xki )q(Yk ,Yi ,Xi ) is independent of x, we note from
Lemma 2.14 (i) and (ii) in Pakes and Pollard (1989) that it suffices to show the
Euclidean property for the two classes (a) (I{Xi ∈ Sn(x)}Xi,x(δn, A) : x ∈ D),
(b) (I{Yi ≤ Qn(Xi ,x)} : x ∈ D). This is indeed true for the envelope F ≡ 1,
following directly from Lemma 22(ii) in Nolan and Pollard (1987) as I (.) is of
bounded variation.
Therefore, according to Proposition 4 in Arcones (1995), noting that |H0

x| =
O
(
δ

p
n h p

n
)
, there exists some constant c0 > 0, such that for any ε > 0 and 1 >

α > 0,

Pr

{
max
x∈D

∣∣∣∣∣∑i 
=k
H0

x(ζi ,ζk)

∣∣∣∣∣≥ εn2δ p
n h p

n (γn)3/4

}
< 2exp

(
−c0n2(γn)3/4

)
= o
(
n−2).

By the Borel-Cantelli lemma, we have with probability one,

max
x∈D

1

nNn(x)

∣∣∣∣∣∑i 
=k
H0

x(ζi ,ζk)

∣∣∣∣∣= o
(
γ

3/4
n

)
, for any α < 1.

This, together with (A.16) and (A.17), leads to

1

nNn(x)

n

∑
i,k=1

Fx(ζi ,ζk) = 1

Nn(x)

n

∑
k=1

Ei [Fx(ζi ,ζk)]

+o
{
(nδ

p
n / logn)−3/4

}
a.s.,

for any α < 1, where the o(.) uniform in x ∈D. This completes the proof. n

LEMMA A.3. Under conditions in Theorem 4.3, we have

∑
i∈Sn(Xj )

di Xi j (δn, A)

G2(Yi |Xi )

[
I
{

Yi ≤ Q̂n(Xi ,Xj )
}− I

{
Yi ≤ Qn(Xi ,Xj )

}]

×{Ĝn(Yi |Xi )− G(Yi |Xi )
}= O

(
n1−κpγ

3/4
n

)
. (A.18)

uniformly in j = 1, . . . ,n.
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Proof. Based on (9) and the fact that |Xi j (δn, A)| ≤ 1, G(.) is bounded away from zero,

the term in (A.18) is bounded by O{(nh p
n / logn)−1/2} multiplied by

1

Nn(Xj )
∑

i∈Sn(Xj )

∣∣∣∣di Xi j (δn, A)

G2(Yi |Xi )
I{Yi ≤ Q̂n(Xi ,Xj )}− I{Yi ≤ Qn(Xi ,Xj )}

∣∣∣∣
≤ 1

Nn(Xj )
∑

i∈Sn(Xj )

di |I
{

Yi ≤ Q̂n(Xi ,Xj )
}− I{Yi ≤ Qn(Xi ,Xj )}|

≤ 1

Nn(Xj )
∑

i∈Sn(Xj )

I{εi ∈ Ini (Xj )} ≤ 1

Nn(Xj )
∑

i∈Sn(Xj )

I{εi ∈Dn},

where

Ini (x) =
[
rn(Xi,x,x)−|{ĉn(x)− cn(x)}�Xi,x(δn, A)|,rn(Xi,x,x)

+
∣∣∣{ĉn(x)− cn(x)

}�Xi,x(δn, A)
∣∣∣],

and Dn = [− K1γ
1/2
n , K1γ

1/2
n
]
, for some K1 > 0, and the last equality follows from

Theorem 4.2 and the fact that |rn(Xi,x,x)| = O(δ
s2
n ) = o

(
γ

1/2
n
)
.

Since nh2p
n /(δ

p
n logn) → ∞ (Assumption A7), EI{εi ∈ Dn} = O

(
γ

1/2
n
) =

o
{
(nh p

n / logn)1/2γ
3/4
n
}

, obviously (A.18) will follow if we can show that

sup
j

∑
i∈Sn(Xj )

[
I{εi ∈Dn}−E[I{εi ∈Dn}]]= O

{
(nh p

n logn)1/2γ
−1/4
n

}
.

To this aim, for any positive constant K2, and x ∈ R p , define

Un(x) =
{

∑
i∈Sn(x)

I{εi ∈Dn}−E[I{εi ∈Dn}] ≥ K2

{(
nh p

n logn
)1/2

γ
−1/4
n

}}
.

Applying Bernstein’s inequality to Un(x), we have

Pr

[
Un(x)) ≤ 2exp

{
− K 2

2 nh p
n logn/γ

1/2
n

4K2n1−κpγ
1/2
n +2K2

(
nh p

n logn
)1/2

/γ
1/4
n

}]
= o
(
n−2);

i.e., ∑n P(Un(x)) < ∞, for sufficiently large K2. This, according to the Borel-Cantelli
lemma, leads to (A.18). n


