
Moraglio, Alberto and Johnson, Colin G. (2010) Geometric Generalization
of the Nelder-Mead Algorithm. In: European Conference on Evolutionary
Computation in Combinatorial Optimization. Lecture Notes in Computer
Science . pp. 190-201. Springer ISBN 978-3-642-12138-8. E-ISBN 978-3-642-12139-5.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/71017/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-642-12139-5_17

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/71017/
https://doi.org/10.1007/978-3-642-12139-5_17
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Geometric Generalization of the
Nelder-Mead Algorithm

Alberto Moraglio and Colin G. Johnson

School of Computing, University of Kent, Canterbury, UK
{a.moraglio, c.g.johnson}@kent.ac.uk

Abstract. The Nelder-Mead Algorithm (NMA) is an almost half-century
old method for numerical optimization, and it is a close relative of Par-
ticle Swarm Optimization (PSO) and Differential Evolution (DE). Ge-
ometric Particle Swarm Optimization (GPSO) and Geometric Differen-
tial Evolution (GDE) are recently introduced formal generalization of
traditional PSO and DE that apply naturally to both continuous and
combinatorial spaces. In this paper, we generalize NMA to combinatorial
search spaces by naturally extending its geometric interpretation to these
spaces, analogously as what was done for the traditional PSO and DE
algorithms, obtaining the Geometric Nelder-Mead Algorithm (GNMA).

1 Introduction

The Nelder-Mead Algorithm published by Nelder and Mead in 1965 [9] is a
numerical optimization method: despite its age, it is the method of choice for
many practitioners. Contrasted with the majority of classic methods for numer-
ical optimization, it only uses the values of the objective function without any
derivative information. The search done by NMA is based on geometric opera-
tions (reflection, expansion, contraction and shrinking) on a current set of points,
seen as the corners of a n-dimensional polygon (a simplex), to determine what
points in space to evaluate next. The overall behaviour of the NMA expands
or focuses the search adaptively on the basis of the topography of the fitness
landscape.

Interestingly, the NMA can be seen as a form of (population-based) evolu-
tionary algorithm with special selection and reproduction operators [13]. Also,
there are similarities between the search operators employed by the NMA and
those of DE [12] and PSO [2] that have led a number of authors to propose hy-
brid approaches (see for example [15] and [3]). As the original versions of DE and
PSO, NMA requires the search space to be continuous and the points in space
to be represented as vectors of real numbers. To the authors’s best knowledge,
there are no generalizations of the NMA to combinatorial spaces.

Both of the searches done by PSO and DE have natural geometric interpre-
tations and both can be understood as the motion of points in space obtained by
(different but related) linear combinations of their current and past positions to
determine their new positions. Geometric Particle Swarm Optimization [5] and

Geometric Differential Evolution [8] are recently devised formal generalizations
of PSO and DE that, in principle, can be specified to any solution represen-
tation while retaining the original geometric interpretation of the dynamics of
the points in space across representations. In particular, these formal algorithms
can be applied to any search space endowed with a distance and associated
with any solution representation to derive formally specific PSO and DE algo-
rithms for the target space and for the target representation. Specific GPSOs
were derived for different types of continuous spaces and for the Hamming space
associated with binary strings [6], for spaces associated with permutations [7]
and for spaces associated with genetic programs [14]. GDE was specialized to
the space of binary strings endowed with the Hamming distance [8]. The derived
algorithms performed satisfactorily in experimental results. This suggests that
the generalization methodology employed is a promising one.

In the present paper we generalize the Nelder-Mead Algorithm to combina-
torial spaces extending its geometric interpretation to these spaces, analogously
to what was done for the traditional PSO and DE algorithms, derive the spe-
cific GNMA for the Hamming space associated with binary strings and present
experimental results on standard benchmark problems.

2 Classic Nelder-Mead Algorithm

In this section, we describe the traditional NMA [9] (see Algorithm 1). The
NMA uses n + 1 points in Rn. These points form a type of n-dimensional poly-
gon, a simplex, which has n + 1 points as vertices in Rn. For example, the
simplex is a triangle in R2 and a tetrahedron in R3. The initial simplex has to
be non-degenerate, i.e., the points must not lie in the same hyperplane. This
allows the NMA to search in all n dimensions. The method then performs a se-
quence of transformations of the simplex, which preserve non-degeneracy, aimed
at decreasing the function values at its vertices. At each step, the transforma-
tion is determined by computing one or more test points and comparing their
function values. In Figure 1, we illustrate the NMA transformations for the two-
dimensional case, where the simplex S consists of three points.

The optimization process described by Algorithm 1 starts with creating a
sample of n + 1 random points in the search space. Notice that apart from the
creation of the initial simplex, all further steps are deterministic and do not
involve random choices. In each loop iteration, the points in the simplex S are
arranged in ascending order according to their corresponding objective values.
Hence, the best solution candidate is S[0] and the worst is S[n]. We then compute
the center m of the n best points and then reflect the worst candidate solution
S[n] through this point, obtaining the new point r as also illustrated in Fig.
1(a). The reflection parameter α is usually set to 1. In the case that r is neither
better than S[0] nor as worse as S[n], we directly replace S[n] with it. If r is
better than the best solution candidate S[0], we expand the simplex further into
this promising direction. As sketched in Fig. 1(b), we obtain the point e with
the expansion parameter γ set to 1. We now take the best of these two points to

Algorithm 1 Nelder-Mead Algorithm
1: Input: f : the objective function to minimize
2: Input: n + 1: number of points in the simplex
3: Input: α, ρ, γ, σ: reflection, expansion, contraction and shrink coefficients
4: Output: x∗: the best solution found
5:
6: S ← createPop(n + 1)
7: while stop criterion not met do
8: S ← sortPop(S, f)
9: // Center of mass: determine the center of mass of the n best points

10: m ← 1
n

∑
i=0,n−1

S[i]

11: // Reflection: reflect the worst point over m
12: r ← m + α(m− S[n])
13: if f(S[0]) < f(r) < f(S[n]) then
14: S[n] ← r
15: else
16: if f(r) ≤ f(S[0]) then
17: // Expansion: try to search farther in this direction
18: e ← r + γ(r −m)
19: if f(e) < f(r) then
20: S[n] ← e
21: else
22: S[n] ← r
23: end if
24: else
25: b ← true
26: if f(r) ≥ f(S[n− 1]) then
27: // Contraction: a test point between r and m
28: c ← ρr + (1− ρ)m
29: if f(c) < f(r) then
30: S[n] ← c
31: b ← false
32: end if
33: end if
34: if b = true then
35: // Shrink towards the best solution candidate S[0]
36: for i from n down to 1 do
37: S[i] ← S[0] + σ(S[i]− S[0])
38: end for
39: end if
40: end if
41: end if
42: end while
43: return S[0]

replace S[n]. If r is no better than S[n], the simplex is contracted by creating a
point c somewhere in between r and m. In Fig. 1(c), the contraction parameter
ρ was set to 1/2. We substitute S[n] with c only if c is better than r. When
everything else fails, we shrink the whole simplex by moving all points (except
S[0]) into the direction of the current optimum S[0]. The shrinking parameter σ
normally has the value 1/2, as is the case in the example outlined in Fig. 1(d).

3 Geometric Nelder-Mead Algorithm

In this section, we derive the general Geometric Nelder-Mead Algorithm (Al-
gorithm 2) from the classic Nelder-Mead Algorithm (Algorithm 1). The gener-
alization is obtained using a methodology to generalize search algorithms for

Fig. 1. One step of the NMA in R2 (figure modified from [16])

continuous spaces to combinatorial spaces [8] based on the geometric framework
introduced by Moraglio [4], sketched in the following.

1. Given a search algorithm defined on continuous spaces, one has to recast
the definition of the search operators expressing them explicitly in terms of
Euclidean distance between parents and offspring.

2. Then one has to substitute the Euclidean distance with a generic metric,
obtaining a formal search algorithm generalizing the original algorithm based
on the continuous space.

3. Next, one can consider a (discrete) representation and a distance associated
with it (a combinatorial space) and use it in the definition of the formal
search algorithm to obtain a specific instance of the algorithm for this space.

4. Finally, one can use this geometric and declarative description of the search
operator to derive its operational definition in terms of manipulation of the
specific underlying representation.

As mentioned in the introduction, this methodology was used to generalize PSO
and DE to any metric space obtaining GPSO and GDE and then to derive the
specific search operators for a number of specific representations and distances.

Following the methodology outlined above, in the following we generalize the
classic Nelder-Mead Algorithm to general metric spaces. To do this, we recast
the search operations described in the previous section (reflection, expansion,
contraction and shrinking) as functions of the distance of the underlying search
space, thereby obtaining their abstract geometric definitions. Then, in Section
4, we derive the specific GNMA for the Hamming space associated with binary
strings by plugging this distance in the abstract definition of the search operators.

3.1 Geometric Generalization of the Nelder-Mead Algorithm

Using the notion of convex combination CX, extension ray ER and center of
mass CM we can generalize all search operators of the classical Nelder-Mead
Algorithm from the Euclidean case to generic metric spaces because, as we will
see in the following sections, these are geometric elements well-defined on any
metric space.

Algorithm 2 Formal Nelder-Mead Algorithm
1: Input: f : the objective function to minimize
2: Input: n + 1: number of points in the simplex
3: Input: α, ρ, γ, σ: reflection, expansion, contraction and shrink coefficients
4: Output: x∗: the best solution candidate found
5:
6: S ← createPop(n + 1)
7: while stop criterion not met do
8: S ← sortPop(S, f)
9: // Center of mass: determine the center of mass of the n best points
10: m ← CM(S[0], S[1], ..., S[n− 1])
11: // Reflection: reflect the worst point over m
12: r ← ER(S[n], m) with weights (α

1+α , 1
1+α)

13: if f(S[0]) < f(r) < f(S[n]) then
14: S[n] ← r
15: else
16: if f(r) ≤ f(S[0]) then
17: // Expansion: try to search farther in this direction

18: e ← ER(m, r) with weights (1
γ , γ−1

γ)

19: if f(e) < f(r) then
20: S[n] ← e
21: else
22: S[n] ← r
23: end if
24: else
25: b ← true
26: if f(r) ≥ f(S[n− 1]) then
27: // Contraction: a test point between r and m
28: c ← CX(r, m) with weights (ρ, 1− ρ)
29: if f(c) < f(r) then
30: S[n] ← c
31: b ← false
32: end if
33: end if
34: if b = true then
35: // Shrink towards the best solution candidate S[0]
36: for i from n down to 1 do
37: S[i] ← CX(S[0], S[i]) with weights (1− σ, σ)
38: end for
39: end if
40: end if
41: end if
42: end while
43: return S[0]

The graphical description of the search operations of NMA (Fig. 1) leads
directly to their geometric interpretation in terms of convex combination and
extension ray, as follows. The reflection of the worst point S[n] over M can be
seen as picking a point beyond M on the extension ray originating in S[n] and
passing through M . The expansion operation can be seen as picking a point
beyond R on the extension ray originating in M and passing through R. The
contraction operation can be seen as picking a point in the segment between R
and M . The shrink of all points S[i] towards the best in the population S[0] can
be seen as replacing each point S[i] with a point in the segment between S[i]
and S[0].

In the following, we rewrite the algebraic definitions of the search operations
of NMA to determine the weights of the corresponding convex combination or
extension ray combination.

The definition of the reflection operation is r = m + α(m − S[n]) (see Al-
gorithm 1, line 12) and it can be rewritten as m = α

1+αS[n] + 1
1+αr. Since the

coefficients of S[n] and r are positive and sum up to 1 (for α ∈ [0, 1]), this equa-
tion says that m is the convex combination of S[n] and r with those coefficients.
However, since r is the unknown and S[n] and m are given, we can determine r
as the inverse operation of the convex combination above, which is the extension
ray combination with origin in S[n] passing through m and keeping the same
weights (α

1+α , 1
1+α) of the convex combination.

The definition of the expansion operation is e = r + γ(r−m) (see Algorithm
1, line 18) and it can be rewritten as r = 1

γ m+ γ−1
γ e, which for γ > 1 is a convex

combination of m and e returning r. Analogously as the reflection operation,
since e is unknown and m and r are given, we can determine e by the extension
ray combination with origin in m passing through r with weights (1

γ , γ−1
γ).

The definition of the contraction operation is c = ρr+(1−ρ)m (see Algorithm
1, line 28), which for ρ ∈ [0, 1] is a convex combination of r and m with weights
(ρ, 1− ρ) returning c.

The definition of the shrink operation for a point S[i] is S[i]′ = S[0]+σ(S[i]−
S[0]) (where S[i]′ denotes S[i] at the next time step) (see Algorithm 1, line 37).
This can be rewritten as S[i]′ = (1 − σ)S[0] + σS[i], which for σ ∈ [0, 1] is a
convex combination of S[0] and S[i] with weights (1− σ, σ) returning S[i]′.

By replacing in Algorithm 1 the original operations defined on the Euclidean
space with their generalized definitions we obtain the definition of a Formal
Nelder-Mead Algorithm valid for any metric space (see Algorithm 2).

3.2 Convex combination, extension ray and center of mass

Center of mass, segments and extension rays in the Euclidean space and their
weighted extensions can be expressed in terms of distances, hence, these geomet-
ric objects can be naturally generalized to generic metric spaces by replacing the
Euclidean distance with a generic metric.

Let (S, d) be a metric space. A (metric) segment is a set of the form [x; y] =
{z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S. The notion of convex combi-
nation in metric spaces was introduced in the GPSO framework [5]. The convex
combination C = CX((A,WA), (B,WB)) of two points A and B with weights
WA and WB (positive and summing up to one) in a metric space endowed with
distance function d returns the set of points C in the segment [A;B] such that
d(A, C)/d(A,B) = WB and d(B,C)/d(A,B) = WA (the weights of the points A
and B are inversely proportional to their distances to C). When specified to Eu-
clidean spaces, this notion of convex combination coincides with the traditional
notion of convex combination of real vectors.

The extension ray ER(A,B) in the Euclidean plane is a semi-line origi-
nating in A and passing through B (note that ER(A,B) 6= ER(B, A)). The
notion of extension ray in metric spaces was introduced in the GDE frame-
work [8]. The weighted extension ray ER is defined as the inverse operation of
the weighted convex combination CX, as follows. The weighted extension ray

Algorithm 3 Binary Convex Combination Operator
1: inputs: binary strings A and B and weights WA and WB (weights must be positive and sum up

to 1)
2: for all position i in the strings do
3: if random(0,1) ≤ WA then
4: set C(i) to A(i)
5: else
6: set C(i) to B(i)
7: end if
8: end for
9: return string C as offspring

ER((A,wab), (B,wbc)) of the points A (origin) and B (through) and weights wab

and wbc returns those points C such that their convex combination with A with
weights wbc and wab, CX((A,wab), (C,wbc)), returns the point B.

The notion of center of mass can be generalized to generic metric spaces, as
follows. The center of mass CM of a set of points p1, ..., pn in a metric space
(S, d) is the point p ∈ S that minimizes its average distance to that set of points,

i.e. CM(p1, ..., pn) = argminp∈S

∑
i=1...n

d(pi,p)

n .

4 Binary NMA

In this section, we present convex combination, extension ray and center of mass
operators for the Hamming space on binary strings, and show formally that
they meet their geometric specifications presented in the previous section. These
specific operators can be plugged in the formal NMA (Algorithm 2) to obtain a
specific GNMA for the Hamming space, the Binary GNMA.

4.1 Convex combination and extension ray

The convex combination operator in metric spaces was introduced in the GPSO
framework [5]. When specified to Euclidean spaces, this notion of convex com-
bination coincides with the traditional notion of convex combination of real
vectors. In the Euclidean space, the output point C of a convex combination
CX((A,WA), (B, WB)) is uniquely determined, however this is not the case for
all metric spaces. In particular, it does not hold for Hamming spaces. When
CX is formally specified to Hamming spaces on binary strings, we obtain the
recombination operator outlined in Algorithm 3 [5], which is a weighted form of
uniform crossover. This algorithm returns offspring C in the Hamming segment
between A and B such that hd(A, C)/hd(B,C) = WB/WA in expectation. This
differs from the Euclidean case where this ratio is guaranteed.

The notion of extension ray in metric spaces was introduced in the GDE
framework [8]. When specified to Euclidean spaces, this notion of extension ray
coincides with the traditional notion. Analogously as for the convex combination
case, in the Euclidean space, the output point C of an extension ray combination
ER((A,wab), (B,wbc)) is uniquely determined, however this is not the case for

Algorithm 4 Binary Extension Ray Recombination
1: inputs: binary strings A (origin) and B (through) of length n and weights WAB and WBC

(weights must be positive and sum up to 1)
2: set HD(A, B) as Hamming distance between A and B
3: set HD(B, C) as HD(A, B) · wAB/wBC (compute the distance between B and C using the

weights)
4: set p as HD(B, C)/(n−HD(A, B)) (this is the probability of flipping bits away from A and B

beyond B)
5: for all position i in the strings do
6: set C(i) = B(i)
7: if B(i) = A(i) and random(0,1) ≤ p then
8: set C(i) to the complement of B(i)
9: end if
10: end for
11: return string C as offspring

Algorithm 5 Binary Center of Mass Operator
1: inputs: binary strings A[1], ..., A[n]
2: for all position i in the strings do

3: C(i) = 1/n ·
∑

j=1,n
A[j](i)

4: if C(i) = 0.5 then
5: C(i) = RandomInteger(0, 1)
6: else
7: C(i) = Round(C(i))
8: end if
9: end for
10: return string C as offspring

all metric spaces. In particular, it does not hold for Hamming spaces. When
ER is formally specified to Hamming spaces on binary strings, we obtain the
recombination operator outlined in Algorithm 4 [8]. This algorithm implements
the inverse operation of the convex combination CX reported above in that it
returns offspring C such that the parent B is in the Hamming segment between
A and C and that hd(A,C)/hd(B, C) = wbc/wab in expectation. This differs
from the Euclidean case where this ratio is guaranteed.

4.2 Center of Mass

When specified to the Hamming space on binary strings the center of mass CM
coincides with the multi-parental recombination that returns the offspring by
taking position-wise the majority vote of the parents and breaking ties randomly
(see Algorithm 5). We prove this in the following.

Theorem 1. The binary string p returned by the binary center of mass operator
CM (Algorithm 5) applied to parents p1, ..., pn minimizes the average Hamming
distance to its parents.

Proof. From the definition of center of mass operator, we have to prove that p

minimizes
∑

i=1...n
hd(pi,p)

n . Since n is constant in p, this is equivalent to prove
that p minimizes

∑
i=1...n hd(pi, p). By expanding the definition of Hamming

distance and exchanging the summations, we have
∑

k=1..m

∑
i=1...n hd(pk

i , pk)

where k is the position in the string and m the number of bits in the string. The
last expression is a linear combination of the (boolean) variables pk. Minimizing
the linear combination is equivalent to minimizing each term

∑
i=1...n hd(pk

i , pk)
in pk separately. Minimizing a term corresponds to finding the center of mass
pk of the strings pk

i of a single bit size. Since pk can take only two values we
have only two cases: (i) when pk = 0 the term

∑
i=1...n hd(pk

i , pk) is the number
of bits in {pk

i } set to 1; (ii) when pk = 1 the term
∑

i=1...n hd(pk
i , pk) is the

number of bits in {pk
i } set to 0. So,

∑
i=1...n hd(pk

i , pk) is minimized by pk = 0
when the number of bits in {pk

i } set to 1 is less than the number of bits set to
0; it is minimized by pk = 1 when the number of bits in {pk

i } set to 0 is less
than the number of bits set to 1. This is a way of describing majority voting
for strings of a single bit size. This reasoning applies to any position k in the
string independently, so we conclude that the majority voting returns the p that

minimizes
∑

i=1...n
hd(pi,p)

n .

Unlike for the Euclidean case in which the simplex is maintained non-degenerate
throughout the search process, so guaranteeing that any dimension is actually
being searched, this does not hold true for the case of the Hamming space. To
counteract the degeneracy of the simplex, in the experiments we will use a ran-
domized version of the CM operator which uses the frequency of the ones and
zeros at each position in the parents as the probability of generating a one or
a zero in the offspring at that position. The expected offspring of the random-
ized operator is the one obtained with majority voting but the variance gives a
greater chance to the search of staying open in all dimensions.

5 Experiments: Results and Discussion

Experiments have been carried out using the well-known NK-Landscape prob-
lem [1], which provides a tunable set of rugged, epistatic landscapes over a space
of binary strings. In our experiments we use landscapes of size n = 20, . . . , 52
for k = 2, . . . , 6 (higher values of n have not been provided for the higher val-
ues of k due to the difficulty of calculating the optimum using exact methods).
These examples are due to Pelikan [11], and can be downloaded from Pelikan’s
website [10].

Two algorithms have been used. The GNMA above (referred to in the dia-
grams as NM) with populations 10 and 100, and a genetic algorithm (referred
to in the diagrams as GA) with population sizes 100, 500 and 1000. Note that
it is not fair to compare algorithms directly on identical population sizes as the
meaning of population size in the two algorithms is very different. The GA uses
uniform crossover with probability 0.8, bitflip mutation with a probability of
1/n, elitism and roulette-wheel selection (i.e. we have chosen standard values
from the literaure). Both algorithms are run until they converge to a value; in
the case of the GA this is taken to mean that the best value has the same value
as in the previous 4 generations.

For each tuple of algorithm, population size n and k, the algorithm has been
executed 10 times on each of 999 examples of NK-landscapes—therefore each

point in the results graphs represents 9990 runs of that particular NK pair. Three
features have been measured: error on the objective function (measured against
exactly-calculated optima computed using branch-and-bound [11]), number of
function evaluations, and number of times the global optimum was found exactly.

Results are presented in Figure 2. The first set of results shows error measures
(further comparisons, with errorbars, can be seen on the authors’s website). The
error is presented as absolute error in arbitary units (i.e., not as a percentage
or proportion of the optimum). The next pair of figures shows the number of
function evaluations taken to convergence (of the population, not necessarily
to convergence to optimum). The final set of results shows the number of runs
(out of 9990) in which the exact optimum was found. Results for k = 3, 4, 5 are
intermediate between k = 2 and k = 6, and can be found on the authors’s web
site.

For all problems, the NM-100 algorithm is the best (or equal-best) algorithm,
in particular performing considerably better than the other algorithms on the
problems with larger values for n, indicating good scaling performance. Clearly
the NM-100 algorithm is using the most function evaluations of any of the al-
gorithms; however, the current version of the GNMA continues until the whole
population has converged on a single individual, so a better stopping condition
might provide a better measure for this. Interestingly, the NM-100 algorithm
achieves a considerably larger number of exact hits precisely on the global opti-
mal value.

The experiments above, that have compared GNMA with a simple GA, are
intended to show that the GNMA is a promising proof-of-concept rather than
showing its competitiveness to state-of-the-art algorithms. As an important piece
of future work, we will examine the performance of GNMA more thoroughly and
compare it more broadly with a number of competitive algorithms including
GPSO and GDE on a larger set of benchmark problems.

6 Conclusions

In this paper, we have generalized the Nelder-Mead Algorithm from continuous
to generic combinatorial spaces by extending the geometric interpretation of the
classic NMA to general metric spaces. The algorithm obtained (GNMA) can
then be formally specified for specific spaces and specific representations. We
have illustrated this by deriving the specific GNMA for the Hamming space
associated with binary strings. We have tested the binary GNMA on a standard
benchmark and compare it with a simple genetic algorithm.

In future work, we will specify the formal GNMA for search spaces associated
with permutations and test it on hard combinatorial optimization problems. The
Nelder-Mead Algorithm is similar to other classical derivation-free methods for
continuous optimization that make use of geometric constructions of points to
determine the next candidate solution (e.g., Controlled Random Search). We will
use the same technique to generalize these algorithms to general metric spaces.

Error: k = 2 Error: k = 6

Function evaluations: k = 2 Function evaluations: k = 6

Exact optimum found: k = 2 Exact optimum found: k = 6

Fig. 2. Results for the five algorithms

References

1. S. Kauffman. Origins of order: self-organization and selection in evolution. Oxford
University Press, 1993.

2. J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan Kaufmann, 2001.
3. C. Luo and B. Yu. Low dimensional simplex evolution: a hybrid heuristic for

global optimization. In Eighth International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing, volume 2,
pages 470–474, 2007.

4. A. Moraglio. Towards a geometric unification of evolutionary algorithms. PhD
thesis, University of Essex, 2007.

5. A. Moraglio, C. D. Chio, and R. Poli. Geometric particle swarm optimization. In
European Conference on Genetic Programming, pages 125–136, 2007.

6. A. Moraglio, C. D. Chio, J. Togelius, and R. Poli. Geometric particle swarm
optimization. Journal of Artificial Evolution and Applications, 2008:Article ID
143624, 2008.

7. A. Moraglio and J. Togelius. Geometric pso for the sudoku puzzle. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 118–125, 2007.

8. A. Moraglio and J. Togelius. Geometric differential evolution. In Proceedings of
the 11th Annual conference on Genetic and evolutionary computation, pages 1705–
1712, 2009.

9. J. A. Nelder and R. A. Mead. A simplex method for function minimization. Com-
puter Journal, 7:308–313, 1965.

10. M. Pelikan. NK landscape generator and instances provided online.
11. M. Pelikan. Analysis of estimation of distribution algorithms and genetic algo-

rithms on nk-landscapes. In Proceedings of the 2008 Genetic and Evolutionary
Computation Conference (GECCO 2008), pages 1033–1040. ACM Press, 2008.

12. K. V. Price, R. M. Storm, and J. A. Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer, 2005.

13. T. Takahama and S. Sakai. Constrained optimization by applying the α-
constrained method to the nonlinear simplex method with mutations. IEEE Trans-
actions on Evolutionary Computation, 9(5):437–451, 2005.

14. J. Togelius, R. D. Nardi, and A. Moraglio. Geometric pso + gp = particle
swarm programming. In Proceedings of the Congress on Evolutionary Comptu-
tation (CEC), 2008.

15. F. Wang and Y. Qiu. Empirical study of hybrid particle swarm optimizers with
the simplex method operator. In Proceedings of the 5th International Conference
on Intelligent Systems Design and Applications, pages 308–313, 2005.

16. T. Weise. Global Optimization Algorithms - Theory and Application. on-line ebook,
2009.

